Law of Cosines Practice

Math 130 Kovitz

A. The rule of supplements is

$$\cos(x) = -\cos(\pi - x).$$

Use this and the trig tables (as needed) to find $\operatorname{arc} C$ if $\cos C$ is as given and $\pi/2 < C < \pi$. Also find C in degrees.

(This exercise serves as practice in using trig tables to further understanding of the rule of supplements; use a calculator only to check your answers. In the future, if you wish, you may solve similar problems directly with a calculator.)

	Answer
1. $\cos C =5000$	$\approx 2.09 \text{ rad}$
2. $\cos C =5807$	$\approx 2.19 \text{ rad}$
3. $\cos C = -1/5$	$\approx 101^{\circ} 32'$
4. $\cos C =8141$	$\approx 144^{\circ} 30'$
5. $\cos C = -\sqrt{3}/2$	$5\pi/6 \text{ rad}$
6. $\cos C =7071068$	$\approx 2.36 \text{ rad}$
7. $\cos C = -1$	

B. Use the Law of Cosines to find the values required. Use trig tables or a calculator (as needed). If you used trig tables, check your answers with a calculator.

Sketch the triangle—does it look right?

	Given	Given	Given	Find	Answer
1.	a = 2	b = 5	c = 4	A and B	$B\approx 108.20996^{\circ}$
2.	$C = 1.266103673 \; \mathrm{rad}$	a = 5	b = 4	c	$c \approx \sqrt{29}$
3.	$C = \pi/6$	b = 10	c = 7	a	
4.	a = 2	b = 3	c = 4	A, B, C	$A\approx 28.955024^{\circ}$
5.	a = 9	$c = \sqrt{73}$	$C\approx 1.230959417~\mathrm{rad}$	b	$b \approx 2 \text{ or } b \approx 4$
6.	a = 12	b = 10	$C = 120^{\circ}$	c, B	
7.	a = 6	b = 7	c = 10	A, B, C	$C\approx 100.28656^\circ$