More practice for Test 1: odd even

Math 130 \bar{Kovitz} Spring 2020: the test is on Wednesday, March 11.

- 1. In each case decide whether the function with the given rule is even, odd, or neither. Then check by evaluating the function for the given numbers.
 - (a) $f(x) = x^{2/3}$. Find f(8) and f(-8).
 - (b) $g(x) = \sqrt{x+16}$. Find g(4) and g(-4).
 - (c) $h(x) = \frac{1}{x} + x$. Find h(1) and h(-1).
 - (d) $f(x) = x^2 x$. Find f(3) and f(-3).
 - (e) $g(x) = (x^2 x)(x + 1)$. Find g(3) and g(-3).
 - (f) $h(x) = (x^2 4x^4)(x^3 + 1)$. Find h(2) and h(-2).
 - (g) $f(x) = \sqrt{x^2 + 4}$. Find $f(\sqrt{5})$ and $f(-\sqrt{5})$.

(h)
$$g(x) = \frac{\sqrt{x^2 - 1}}{x}$$
. Find $g(2)$ and $g(-2)$.

- (i) $h(x) = (\sqrt{x})^2$, only when defined as real numbers. Find h(9) and h(-9).
- (j) $f(x) = \sqrt{x^2}$. Find f(3) and f(-3).
- (k) g(x) = 16. Find g(16) and g(-16).
- (l) h(x) = 0. Find h(4) and h(-4).
- (m) $f(x) = x^3$. Find f(2) and f(-2).
- (n) $g(x) = x^3 + 2$. Find g(3) and g(-3).
- (o) h(x) = |x 1|. Find h(1) and h(-1).
- (p) $f(x) = |x^2 3|$. Find f(2) and f(-2).
- (q) $g(x) = |(x-2)^2 c|$. Find g(6) and g(-6).
- (r) $h(x) = \frac{2x^5 \sqrt[3]{x}}{\sqrt[5]{x} + 2x}$. Find h(1) and h(-1).
- (s) $f(x) = (x-1)^3$. Find f(4) and f(-4).
- (t) $g(x) = \sqrt{x}\sqrt{x}$. Find g(9) and g(-9).

The following problem is tricky. Usual check is not recommended; just use algebraic simplification to help to decide.

(u)
$$h(x) = \left[3x - \left(\frac{1+\sqrt{3}}{5}\right)\right] \left[3x + \left(\frac{1+\sqrt{3}}{5}\right)\right].$$

Answers follow.

Answers.

- 1. In the cases where all x in the formula on the right side are to even powers, the function is even.
 - (a) f(x) is even. Rewrite as $(x^2)^{1/3}$ and use the rule of even powers. f(8) = 4 and f(-8) = 4.
 - (b) g(x) is neither. $g(4) = \sqrt{20} = 2\sqrt{5}$ and g(-4) = 4.
 - (c) h(x) is odd. h(1) = 2 and h(-1) = -2.
 - (d) f(x) is neither. f(3) = 6 and f(-3) = 12.
 - (e) g(x) is neither. g(3) = 24 and g(-3) = -12.
 - (f) h(x) is neither. h(2) = -540 and h(-2) = 420.
 - (g) f(x) is even. $f(\sqrt{5}) = 3$ and $f(-\sqrt{5}) = 3$. Also, the rule of even powers applies.
 - (h) g(x) is odd. $g(2) = \sqrt{3}/2$ and $g(-2) = -\sqrt{3}/2$.
 - (i) h(x) is neither. Its domain is $[0, \infty)$, which is unbalanced, so it cannot be even and it cannot be odd. h(9) = 9 but h(-9) is not defined, because -9 is not in the domain.
 - (j) f(x) is even. f(3) = 3 and f(-3) = 3. The formula is equivalent to f(x) = |x|. Or simply note from the original form that the rule of even powers applies.
 - (k) g(x) is even. g(16) = 16 and g(-16) = 16. Any constant function of the form f(x) = c will be even. The rule of even powers applies because all x in the formula (the right side) are to even powers. Since there are no x, the statement is true. Example: all men over 10 feet tall attend UMass Boston would be trivially true.
 - (1) h(x) = 0 is even and h(x) = 0 is also odd. h(4) = 0 and h(-4) = 0, so it is easy to see that it is even by the rule inferred from the previous problem. However since -0 = 0, we can also say that h(-a) = -h(a). That is in addition to the fact that h(-a) = h(a). 'Both' only happens when the output of the function is always 0.
 - (m) f(x) is odd. f(2) = 8 and f(-2) = -8.
 - (n) g(x) is neither. Find that g(3) = 29 and g(-3) = -25. Because $-25 \neq 29$ and $-25 \neq -(29)$, it is verified that the function g is not odd and not even.
 - (o) h(x) is neither. h(1) = 0 and h(-1) = 2.
 - (p) f(x) is even. f(2) = 1 and f(-2) = 1. Also, the rule of even powers applies here.
 - (q) g(x) is neither. g(6) = 16 c and g(-6) = 64 c. It is impossible for g(-6) to ever be equal to g(6). But, if c were equal to 40, g(-6) and -g(6) would be equal, and you'd need to pick another value besides 6 in order to show that g(a) and g(-a) are not equal for all real numbers. The rule of even powers does not apply here, because the power 2 is not a direct power of the variable x.
 - (r) h(x) is even. h(1) = 1/3 and h(-1) = 1/3. To substantiate, multiply top and bottom by x. The rule of even powers will then apply, because $x(\sqrt[3]{x}) = x^{4/3} = (x^4)^{1/3}$, and $x(\sqrt[5]{x}) = x^{6/5} = (x^6)^{1/5}$.
 - (s) f(x) is neither. f(4) = 27 and f(-4) 125.
 - (t) g(x) is neither. g(9) = 9 but g(-9) is not defined over the reals, because $\sqrt{(-9)}$ is not real. Or just note that the domain is $[0, \infty)$, which is not balanced. It's exactly the same problem as in part (i).
 - (u) $h(x) = 9x^2 \left(\frac{1+\sqrt{3}}{5}\right)^2$, so it is even by the rule of even powers..