Sample of Typical Final Examination Problems

Math 130 Precalculus for the Dec. ??, 2019 Final Exam

No books, notes, or graphing calculators; scientific calculators permitted. Show all work with at least four-decimal-place accuracy.

- 1. When $f(x) = \frac{1}{x+1}$ and $h \neq 0$, find $\frac{f(2+h) f(2)}{h}$ and simplify the result.
- 2. In each case decide whether the function with the given rule is even, odd, or neither. Explain your reasoning or support your answer.
 - (a) $f(x) = \frac{1}{x-1} + \frac{1}{x} + \frac{1}{x+1}$
 - (b) g(x) = |x+1|
 - (c) h(x) = |x+3| |x-3|
 - (d) $i(x) = \sqrt{(4-x)(4+x)}$
 - (e) $i(x) = \sqrt{x+1} \cdot \sqrt{x-1}$, defined for real-valued outputs only.
- 3. Let $f(x) = \sqrt{x}$ for all $x \ge 0$ and $g(x) = x^2$ for all real numbers.

True or false:

- (a) $(f \circ g)(x) = x$ for all real numbers.
- (b) f and g are inverse functions.
- 4. Determine whether $f(x) = \frac{4}{-5x+3}$ has an inverse function. If it does, find the inverse function.

If it has an inverse function:

What is the value of f(1)? Call it a.

Apply the function f inverse (written as f^{-1}) to a. Is the result OK?

5. Find the largest area that a farmer can enclose by constructing a rectangular pen from 26 feet of fencing, if he uses a corner of his barn for two walls of the pen. BARN

- 6. On the graph of the function $y = \log_2 x$, when the x-coordinate of point B is 16 times the square of the x-coordinate of point A, how is the y-coordinate of point B related to the y-coordinate of point A?
- 7. Find
 - (a) $4^{\log_4 1/2}$.
 - (b) $\log_4(4^{1/2})$.
- 8. Decide if each statement is true or false. Then justify your answer by writing an equation.
 - (a) Multiplying two numbers then taking the log gives the same result as taking each log and then adding them.
 - (b) Taking the logs of two numbers then dividing those two logs gives the same result as subtracting the two numbers then taking the log of that difference.
 - (c) The product of $\log_a b$ and $\log_b a$ is always equal to 1.

- 9. In each of parts (a) through (h), approximate the logarithm, using the properties of logarithms, given $\log_b 2 \approx 1.098$, $\log_b 3 \approx 1.740$, and $\log_b 5 \approx 2.5495$.

- $\begin{array}{lll} \text{(a)} & \log_b 6 & \text{(e)} & \log_b 20 \\ \text{(b)} & \log_b \frac{3}{5} & \text{(f)} & \log_b (4b)^{-2} \\ \text{(c)} & \log_b 125 & \text{(g)} & \log_b (5b^2) \end{array}$

- (d) $\log_b \sqrt{3}$ (h) $\log_b \sqrt[3]{2b}$
- 10. Solve algebraically:
 - (a) $\log x + \log(x 15) = 2$.
 - (b) $\log x \log(x 15) = 2$.
 - (c) $\log 24x \log(1 + \sqrt{x}) = 2$.
- 11. First decide in which intervals all valid solutions must lie.

Then solve for x.

$$\log_2 x - \log_2(2x - 1) = -3.$$

Check your solutions in the original equation.

12. Solve algebraically: $\log_2 x + \log_2 (1 - 3x) = -4$.

Hint: to solve the equation found after applying some log rules, just use the quadratic formula.

13. First decide in which intervals all valid solutions must lie.

Then solve for x.

$$\log_2 x + \log_2 (1 - 2x) = -3.$$

Check your solutions in the original equation.

- 14. Solve for x:
 - (a) $\frac{\log_3 x}{\log_3 (x-1)} = 2$.
 - (b) $\log_3 x \log_3(x-1) = 2$.
- 15. (a) Rewrite in radian measure as a fractional multiple of π and in degree measure: 3/16 of a revolution.
 - (b) Rewrite in degree measure: $\frac{7\pi}{8}$.
 - (c) Rewrite in radian measure as a fractional multiple of π in lowest terms: 132°.
 - (d) Find the length of the arc on a circle of radius $150/\pi$ feet intercepted by a central angle of 150° .
- 16. A group has a banner that is 80 feet long. They wish to display it in the form of an arc of a circle that has angular measure of 80°. What is the radius of the circle needed for this layout? The answer may be left as $\frac{N}{\pi}$ feet.

17. A right triangle has an acute angle θ with $\sec \theta = \frac{8}{7}$. Find the exact values of the other five trigonometric functions of θ , in fractional form. Some of the expressions will involve square roots; do not convert the square roots to decimals.

Then find the exact values of $\sec(90^{\circ} - \theta)$ and of $\csc^{2} \theta - 1$, also in fractional form.

Hint. First sketch a right triangle corresponding to that secant. Next use the Pythagorean Theorem to determine the third side. Then find the other five trigonometric functions of θ .

For the other two values, use the appropriate trigonometric identities.

- 18. In each part, decide whether the identity is true or false. If true, verify it.
 - (a) $\csc x \sin x = \cot x \cos x$.
 - (b) $\frac{1}{\cos x} \frac{1}{\sec x} = \cos x \sec x$. (c) $(1 + \cot x)^2 = \csc^2 x$.
- 19. Simplify and reduce to an expression that contains at most one trig function.
 - (a) $\cos x (1 + \tan x) (1 \tan x)$
 - (b) $\tan x \cos^2 x$
 - (c) $\cos^4 x \sin^4 x$
 - $\underline{1 + \cot^2 x}$ $\sin x$
 - $\sec x$ (e) $\csc x$
 - $\sec x$ (f) $\sin x$
- 20. Find all solutions to $\sin \theta = 0.669$ in the interval $0 < \theta < 180^{\circ}$.

Round off both answers to the nearest 0.01° .

21. Find all solutions to $\cos \theta = -0.26$ in the interval $0 \le \theta < 360^{\circ}$.

Round off both answers to the nearest 0.01°.

- 22. (a) Find all solutions with $0 \le x \le 2\pi$ for $\sin 2x = -\cos x$.
 - (b) Graph $\sin 2x$ and $-\cos x$ on the same axes and indicate on your sketch the points corresponding to the solutions in part (a).
- 23. (a) Find all x between 0 and 2π for which $\sin 2x = -\sin x$.
 - (b) Sketch the graphs of $\sin 2x$ and $-\sin x$ on the same axes, indicating on your sketch the points corresponding to the solutions in part (a).
- 24. Find the period and the amplitude of

$$y = 5\sin\left(2x - \frac{\pi}{4}\right).$$

Graph one period. Label with coordinates the endpoints of that period, the highest and lowest points, and all intercepts in that period.

State the phase fraction: the portion of a period that the graph was translated right (+) or left (-).

It might be less confusing with the 2 factored out of the expression in the parentheses.

25. Write an algebraic expression that is equivalent to the given expression.

$$\cos\left(\arcsin\frac{1}{x}\right)$$