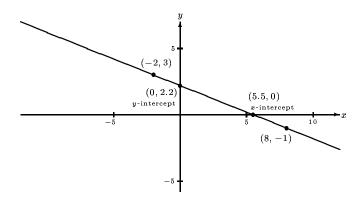
Answers to the Sample Final Examination Problems

Math 130 Precalculus of the December ??, 2019 Final Exam

1.
$$y = -\frac{2}{5}x + \frac{11}{5}$$
 or $y = -0.4x + 2.2$

Also
$$y-3 = -\frac{2}{5}(x+2)$$
 or $y+1 = -\frac{2}{5}(x-8)$

Also
$$2x + 5y = 11$$
.



Work:
$$m = \frac{-1-3}{8-(-2)} = \frac{-4}{10} = -2/5$$
 and $y - 3 = -\frac{2}{5}(x+2)$.

2. The center is at the midpoint of the diameter: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = (1/2, 2)$.

The distance between the given points is $\sqrt{(-2-3)^2 + (-4-8)^2} = \sqrt{25+144} = \sqrt{169} = 13$.

That was the length of the diameter; the radius has length 13/2 = 6.5.

$$\left(x - \frac{1}{2}\right)^2 + (y - 2)^2 = 6.5^2.$$

$$3. \ \frac{f(2+h)-f(2)}{h} = \frac{(8+8h+2h^2+6+3h-1)-(2(2^2)+3(2)-1)}{h} = \frac{11h+2h^2}{h} = 11+2h, \ h \neq 0.$$

- 4. (a) The graph of $y = \sqrt{x}$ was moved 5 units to the left and 5 units up.
 - (b) The graph of $y = \sqrt{x}$ was stretched vertically by a factor of 2 and moved 3 units to the right.
 - (c) It is best to rewrite this as $i(x) = -\sqrt{-(x+3)}$.

Then graph an intermediate function, $y = \sqrt{-x}$, first. Its graph is the graph of f(x) reflected across the y-axis.

Then replace x with (x + 3) to get $y = \sqrt{-(x + 3)}$. This moves the previous graph 3 units to the left.

Finally, $i(x) = -\sqrt{-x-3}$ is just the previous graph reflected across the x-axis, since all y values will assume opposite sign.

Answer: The graph of $y = \sqrt{x}$ was reflected across the y-axis, then shifted 3 units to the left, and then reflected across the x-axis.

Verify by noting that the point (9,3) on f will end up as the point (-12,-3) on i and that the point (-12,-3) is indeed a solution of the equation for i because $-3 = -\sqrt{-(-12)-3}$.

5. (a) $f \circ g(x) = f(g(x)) = \sqrt{(x^2 + 4) - 4} = \sqrt{x^2} = |x|$ and $g \circ f(x) = g(f(x)) = (\sqrt{x - 4})^2 + 4 = x - 4 + 4 = x$.

The domain of $f \circ g$ is all reals since g always has an output of 4 or more which, when input into f guarantees that the number under the square root will be positive.

The domain of $g \circ f$ is $[4, \infty)$, as that is the domain of f.

- (b) f: The domain is $[4, \infty)$ and the range is $[0, \infty)$.
 - g: The domain is all reals and the range if $[4, \infty)$.

Since the domain of g is not the same as the range of f, f and g are not inverse functions.

6. (a) The range is $[0, \infty]$.

The x-intercept is at (-1,0) and the y-intercept is at (0,1).

(b) Yes, it is steadily increasing.

To find the inverse: write $y = \sqrt{x+1}$, switch x and y to get: $x = \sqrt{y+1}$, then solve for y.

$$x^2 = y + 1$$
, so $y = x^2 - 1$. The formula for the inverse of f is: $f^{-1}(x) = x^2 - 1$.

However, the domain of the inverse must be the same as the range of f. The inverse is $f^{-1}(x) = x^2 - 1$ for $x \ge 0$ only.

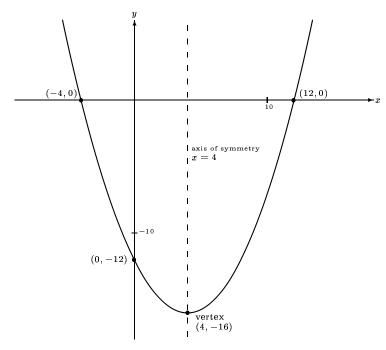
The y-intercept is at (0, -1) and the x-intercept is at (1, 0). Just switch the x- and y-coordinates of the previous points, because the inverse is the reflection across the line y = x.

7.
$$y = \frac{1}{4}(x-4)^2 - 16$$
.

The steps:
$$y = \frac{1}{4}(x^2 - 8x) - 12$$
, $y = \frac{1}{4}(x^2 - 8x + 16 - 16) - 12$, $y = \frac{1}{4}[(x - 4)^2 - 16] - 12$.

Be very careful to distribute to the dangling term, -16. The $\frac{1}{4}(-16)$ becomes -4.

So, the standard form is
$$y = \frac{1}{4}(x-4)^2 - 16$$
.



8. Call the two numbers w and x. It is best to avoid using the variable y because of the potential confusion with the actual output.

The product is p = wx. This problem can be reduced to two variables by using the conditions relating w and x linearly.

$$\left(\frac{1}{4}\right)w + x = 5.$$

Solve for w to get w = 20 - 4x.

Substitute in the original equation to get $p = (20 - 4x)x = 20x - 4x^2$.

 $p = -4x^2 + 20x$ is a quadratic function in x. It opens down and has a maximum.

The maximum product—the maximum value of this function—is 25, obtained from the vertex formula. It occurs when the 2nd number x = 2.5, because by the vertex formula h = -b/2a = -20/(-8) = 2.5.

From this result, let us construct the original ordered pair that has the maximum product.

The product is 25, the second number is 2.5, and the first number is 20 - 4(2.5) = 10, so the ordered pair was (10, 2.5). The product checks as $10 \times 2.5 = 25$.

9. All are true.

10. $\log_b \frac{1}{2} = \log_b 1 - \log_b 2 = 0 - 3/4 = -3/4$.

To evaluate $\log_2 b$, change the base to b and get $\log_2 b = \frac{\log_b b}{\log_b 2} = \frac{1}{3/4} = 4/3$.

 $b^{3/4}=2$, so raise each side to the 4/3 power to get $b=2^{4/3}$. It rounds off to about 2.52.

- 11. (a) True.
 - (b) False.
 - (c) True. Be careful. The denominator is the log of the square root, not the square root of the log.
 - (d) False. It is not true when a is negative. But change the right side to $2 \log |a| 2$ and it is true.
 - (e) True.
 - (f) False.
- 12. (a) False.
 - (b) False.
 - (c) True.
 - (d) False.
 - (e) True.
- 13. (a) True.
 - (b) True: it is $\log_2 5$, which equals (upon change to base 10) $\frac{\log 5}{\log 2}$.
- 14. (a) $\log_a 32 + \log_a \frac{1}{4} = \log_a (32 \times \frac{1}{4}) = \log_a 8 = \log_a 2^3 = 3\log_a 2 = 3 \times 0.2 = 0.6$.
 - (b) $\log_a 4\sqrt{2} = \log_a 4 + \log_a \sqrt{2} = \log_a 2^2 + \log_a 2^{1/2} = 2\log_a 2 + (1/2)\log_a 2 = 0.4 + 0.1 = 0.5.$
 - (c) $\frac{\log_a 5}{\log_a 2} = \log_2 5$, by change of base.

Then multiply out to get $\log_a 5 = (\log_a 2)(\log_2 5) = 0.2(\frac{\log 5}{\log 2}) = 0.2(0.69897/0.30103) \approx 0.4644.$

15. Only solutions where x > 1 will be valid.

$$\log\left(\frac{1}{x-1}\right) = 2.$$

$$10^2 = \frac{x}{x-1}.$$

$$100 = \frac{x}{x-1}.$$

100x - 100 = x, 99x = 100, x = 100/99. That's OK; it is greater than 1.

- 16. (a) 7.5 hours.
 - (b) False. There were exactly 8 pounds of frut flies at time 17 hours, not at time 8 hours.
 - (c) $2^{1.8} \approx 3.4822$ pounds of fruit flies.
 - (d) Exactly at time 39 hours and 30 minutes.
- 17. (a) $\sin \theta = 1/\csc \theta = \frac{1}{5/2} = 2/5$.
 - (b) $1 + \cot 2\theta = \csc^2 \theta$, so $\cot^2 \theta = (5/2)^2 1 = 21/4$ and $\cot \theta = \sqrt{21/2}$.
 - (c) $\cos 2\theta = 1 \sin^2 2\theta = 1 2(2/5)^2 = 1 2(4/25) = 1 8/25 = 17/25 = 0.68$.
 - (d) $\sin(30^{\circ} + \theta) = \sin 30^{\circ} \cos \theta + \cos 30^{\circ} \sin \theta = (1/2)(\sqrt{21}/5) + (\sqrt{3}/2)(2/5) = \sqrt{21}/10 + (2\sqrt{3})/(2 \times 5) = \sqrt{21}/10 + \sqrt{3}/5 \approx 0.8046677.$

This problem could be checked on a calculator by getting $\sin^{-1} 0.4 \approx 23.5782^{\circ}$.

For part (c): Double 23.5782° to get 47.1564°. Its cosine is 0.68000, to 5 decimals.

For part (d): add 30° to 23.5782° and take the sine of the result. The sine of 53.5782° is close to 0.804668.

- 18. $\cos 30^\circ = \sqrt{3}/2 = 4/h$. So $h = 8/\sqrt{3} = \frac{8}{3}\sqrt{3}$ after rationalization.
- 19. $\pi/6$ and $2\pi \pi/6$. So $\pi/6$ and $11/\pi/6$. For the cosine, the primary solution is always the arccosine and the second one is either 2π minus the first solution or minus the first solution.
- $20. \, \sin 165^\circ = \sin 120^\circ \cos 45^\circ + \cos 120^\circ \sin 45^\circ = \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) + \left(-\frac{1}{2}\right) \left(\frac{\sqrt{2}}{2}\right) = \sqrt{6}/4 \sqrt{2}/4.$

21.
$$x = 400$$
.

Solution:
$$\log\left(\frac{25x}{4(5-\sqrt{x})}\right) = 2$$
.

$$\frac{25x}{5+\sqrt{x}} = 100.$$

Divide both sides by 25 to get: $\frac{x}{4(5+\sqrt{x})} = 4$.

$$x = 16(5 + \sqrt{x}).$$

$$x - 16\sqrt{x} - 80 = 0.$$

Let
$$a = \sqrt{x}$$
. Then: $a^2 - 16a - 80 = 0$ and $(a - 20)(a + 4) = 0$.

a cannot be negative, so -4 is rejected and a = 20.

$$x = a^2 = 400.$$

Check:
$$\log\left(\frac{10,000}{4}\right) - \log(5 + \sqrt{400}) = 2$$
.

 $\log 2500 - \log(25) = \log(2500/25) = \log 100 = 2$, so it checks.

22. (a) i.
$$x = \arctan\left(\frac{1}{2}\right)$$

ii.
$$\approx 26.56505^{\circ}$$

(b)
$$\csc 2x = \csc 53.1301^{\circ} = 1/\sin 53.1301^{\circ} = 1/0.8 = 1.25.$$

and

 $1 + \tan^2 26.56505 = 1 + .5^2 = 1.25$. Verified. (Slight rounding off was necessary.)