Sample Final Examination

Math 130 Precalculus for the May 22, 2019 Final Exam

No books, notes, or graphing calculators; scientific calculators permitted.

Show all work with at least four-decimal-place accuracy.

- 1. Find an equation of the line passing through the points (8,-1) and (-2,3). Sketch the line and label both intercepts with their coordinates.
- 2. When $f(x) = \frac{1}{x+1}$ and $h \neq 0$, find $\frac{f(2+h) f(2)}{h}$ and simplify the result.
- 3. In each case decide whether the function with the given rule is even, odd, or neither. Explain your reasoning or support your answer.

(a)
$$f(x) = \frac{1}{x-1} + \frac{1}{x} + \frac{1}{x+1}$$

- (b) g(x) = |x+1|
- (c) h(x) = |x+3| |x-3|
- (d) $i(x) = \sqrt{(4-x)(4+x)}$
- (e) $j(x) = \sqrt{x+1} \cdot \sqrt{x-1}$, defined for real-valued outputs only.
- 4. In each part, how is the graph of the given function related to the graph of the parent function $f(x) = \sqrt{x}$?
 - (a) $g(x) = \sqrt{x+5} + 5$.
 - (b) $h(x) = 2\sqrt{x-3}$.
 - (c) $i(x) = -\sqrt{-x-3}$.
- 5. For $f(x) = \sqrt{x-4}$ and $g(x) = x^2 + 4$,
 - (a) Find $f \circ g$ and $g \circ f$.

Find the domain of each composite function (the domain of $f \circ g$ and of $g \circ f$).

- (b) Find the domain and the range of f.
 - Find the domain and the range of g.

In light of the domain and range of f and g, decide whether f and g are true inverse functions of each other.

6. Determine whether $f(x) = \frac{4}{-5x+3}$ has an inverse function. If it does, find the inverse function.

If it has an inverse function:

What is the value of f(1)? Call it a.

Apply the function f inverse (written as f^{-1}) to a. Is the result OK?

7. Complete the square, getting the equation $y = \frac{1}{4}x^2 - 2x - 12$ into standard form, and sketch its graph. Plot the vertex, axis of symmetry, and all intercepts, labelling with both coordinates or the equation.

Log Problems are on the next page.

- 8. On the graph of the function $y = \log_2 x$, when the x-coordinate of point B is 16 times the square of the x-coordinate of point A, how is the y-coordinate of point B related to the y-coordinate of point A?
- 9. Given that $\log_b 2 = 3/4$, find $\log_b \frac{1}{2}$, $\log_2 b$, and (to two decimal places) b.
- 10. True or false:
 - (a) $\log(3.4 \times 13.4) = \log 3.4 + \log 13.4$.
 - (b) $\log 2.5 \times \log 4 = \log 6.5$.
 - (c) $\frac{\log \frac{1}{2}a \log a}{\log \left(\frac{1}{2}\right)^{1/2}} = 2 \quad \text{for all } a \text{ such that } a > 0.$
 - (d) $\log \left(\frac{1}{100}a^2\right) = 2\log a 2$ for a any non-zero real number.
 - (e) The log of the quotient equals the difference of the logs.
 - (f) The log of the sum equals the product of the logs.
- 11. Solve the equation $\log x \log(x 1) = 2$.

Before solving, decide which x-values are valid substitutions into both of these logs.

- 12. Solve algebraically:
 - (a) $\log x + \log(x 15) = 2$.
 - (b) $\log x \log(x 15) = 2$.
 - (c) $\log 24x \log(1 + \sqrt{x}) = 2$.
- 13. Solve for x:
 - (a) $\frac{\log_3 x}{\log_3 (x-1)} = 2$.
 - (b) $\log_3 x \log_3(x-1) = 2$.
- 14. A population of fruit flies is increasing according to the law of exponential growth. At time 2 hours there are 2 pounds of flies and at time 32 hours there are 32 pounds of flies.
 - (a) Find the exact value of the doubling time. (No calculator is necessary.)
 - (b) True or false: at time 8 hours there were exactly 8 pounds of fruit flies.
 - (c) If false, about how many pounds of fruit flies were there at time 8 hours (to the nearest three-decimal accuracy or as an exact radical expression).
 - (d) At exactly what time will there be 64 pounds of fruit flies?

Trig Problems are on the next page.

- 15. (a) Rewrite in radian measure as a fractional multiple of π and in degree measure: 3/16 of a revolution.
 - (b) Rewrite in degree measure: $\frac{7\pi}{8}$.
 - (c) Rewrite in radian measure as a fractional multiple of π in lowest terms: 132°.
 - (d) Find the length of the arc on a circle of radius $150/\pi$ feet intercepted by a central angle of 150° .
- 16. A right triangle has an acute angle θ with $\sec \theta = \frac{8}{7}$. Find the exact values of the other five trigonometric functions of θ , in fractional form. Some of the expressions will involve square roots; do not convert the square roots to decimals.

Then find the exact values of $\sec(90^{\circ} - \theta)$ and of $\csc^{2} \theta - 1$, also in fractional form.

Hint. First sketch a right triangle corresponding to that secant. Next use the Pythagorean Theorem to determine the third side. Then find the other five trigonometric functions of θ .

For the other two values, use the appropriate trigonometric identities.

- 17. Find the hypotenuse of a right triangle in which an acute angle of 30° has an adjacent leg of 4 inches.
- 18. In each part, decide whether the identity is true or false. If true, verify it.
 - (a) $\csc x \sin x = \cot x \cos x$.
 - (b) $\frac{1}{\cos x} \frac{1}{\sec x} = \cos x \sec x.$
 - (c) $(1 + \cot x)^2 = \csc^2 x$.
- 19. Find all solutions to $\cos \theta = \sqrt{3}/2$ in the interval $0 \le \theta < 2\pi$.
- 20. (a) Find all solutions with $0 \le x \le 2\pi$ for $\sin 2x = -\cos x$.
 - (b) Graph $\sin 2x$ and $-\cos x$ on the same axes and indicate on your sketch the points corresponding to the solutions in part (a).
- 21. Find the exact value of sin 165°.
- 22. Find the size of the angle between the sides of lengths 5 and 16 in a triangle with sides of 5, 16, and 19.
- 23. Write an algebraic expression that is equivalent to the given expression.

$$\cos\left(\arcsin\frac{1}{x}\right)$$