More Typical Final Examination Problems

Math 130 Precalculus for the May 24, 2019 Final Exam

No books, notes, or graphing calculators; scientific calculators permitted. Show all work with at least four-decimal-place accuracy.

- 1. When $f(x) = 2x^2 + 3x 1$ and $h \neq 0$, find $\frac{f(2+h) f(2)}{h}$ and simplify the result.
- 2. Let $f(x) = \sqrt{x}$ for all $x \ge 0$ and $g(x) = x^2$ for all real numbers.

True or false:

- (a) $(f \circ q)(x) = x$ for all real numbers.
- (b) f and g are inverse functions.
- 3. The function f is described by the equation $f(x) = \sqrt{x+1}$ and the domain $[-1, \infty)$.
 - (a) What is the range of f?

What are the coordinates of its x and y-intercepts?

(b) Is the function f one-to-one?

If so, find its inverse, giving the formula and the domain.

What are the coordinates of the x and y-intercepts of the inverse function of f?

4. Find the largest area that a farmer can enclose by constructing a rectangular pen from 26 feet of fencing, if he uses a corner of his barn for two walls of the pen.

BARN

- 5. For the function $f(x) = 2^x$, decide whether each of the following statements is true or false.
 - (a) If you change the sign of the input, the output ends up the reciprocal of what it was previously.
 - (b) If you double the input, the output ends up the square of what it was previously.
 - (c) If you add 3 to the input, the output ends up 8 times as much as it was previously.
 - (d) If you square the input, the new output is the old output raised to the previous input.
- 6. True or false:
 - (a) $\frac{\log_a 5}{\log_a 2} = \log_2 5$.
 - (b) $\frac{\log_a 5}{\log_a 2} = \frac{\log 5}{\log 2}$
- 7. Decide if each statement is true or false. Then justify your answer by writing an equation.
 - (a) Multiplying two numbers then taking the log gives the same result as taking each log and then adding them.
 - (b) Taking the logs of two numbers then dividing those two logs gives the same result as subtracting the two numbers then taking the log of that difference.
 - (c) The product of $\log_a b$ and $\log_b a$ is always equal to 1.
- 8. In each of parts (a) through (h), approximate the logarithm, using the properties of logarithms, given $\log_b 2 \approx 1.098$, $\log_b 3 \approx 1.740$, and $\log_b 5 \approx 2.5495$.

- $\begin{array}{lll} \text{(a)} & \log_b 6 & \text{(e)} & \log_b 20 \\ \text{(b)} & \log_b \frac{3}{5} & \text{(f)} & \log_b (4b)^{-2} \\ \text{(c)} & \log_b 125 & \text{(g)} & \log_b (5b^2) \end{array}$
- (d) $\log_b \sqrt{3}$
- (h) $\log_b \sqrt[3]{2b}$
- 9. First decide in which intervals all valid solutions must lie.

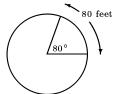
Then solve for x.

$$\log_2 x - \log_2(2x - 1) = -3.$$

Check your solutions in the original equation.

10. Solve algebraically: $\log_2 x + \log_2 (1 - 3x) = -4$.

Hint: to solve the equation found after applying some log rules, just use the quadratic formula.


11. First decide in which intervals all valid solutions must lie.

Then solve for x.

$$\log_2 x + \log_2 (1 - 2x) = -3.$$

Check your solutions in the original equation.

12. A group has a banner that is 80 feet long. They wish to display it in the form of an arc of a circle that has angular measure of 80°. What is the radius of the circle needed for this layout? The answer may be left as $\frac{N}{\pi}$ feet.

- 13. A clock has a minute hand that is 4 feet long and an hour hand that is 2 1/2 feet long.
 - (a) Find the angular velocity of the minute hand in radians per hour, in revolutions per hour, and in degrees per minute.
 - (b) Find the linear velocity of the tip of the minute hand in inches per minute.
 - (c) Find the angular velocity of the hour hand in radians per hour and in degrees per minute.
 - (d) At any moment, how fast is the angle between the two hands increasing or decreasing? Give answer in degrees per minute.
 - (e) In one day how far has the tip of the hour and the tip of the minute hand travelled?
 - (f) How many days does it take for the tip of the minute hand to travel one mile?
- 14. Simplify and reduce to an expression that contains at most one trig function.
 - (a) $\cos x (1 + \tan x) (1 \tan x)$
 - (b) $\tan x \cos^2 x$
 - (c) $\cos^4 x \sin^4 x$
 - (d) $\frac{1 + \cot^2 x}{\sin x}$
 - (e) $\frac{\sec x}{\csc x}$
 - (f) $\frac{\sec x}{\sin x}$
- 15. Find all solutions to $\sin \theta = 0.669$ in the interval $0 \le \theta < 180^{\circ}$.

Round off both answers to the nearest 0.01°.

16. Find all solutions to $\cos \theta = -0.26$ in the interval $0 \le \theta < 360^{\circ}$.

Round off both answers to the nearest 0.01°.

- 17. (a) Find all x between 0 and 2π for which $\sin 2x = -\sin x$.
 - (b) Sketch the graphs of $\sin 2x$ and $-\sin x$ on the same axes, indicating on your sketch the points corresponding to the solutions in part (a).
- 18. Find the period and the amplitude of

$$y = 5\sin\left(2x - \frac{\pi}{4}\right).$$

Graph one period. Label with coordinates the endpoints of that period, the highest and lowest points, and all intercepts in that period.

State the phase fraction: the portion of a period that the graph was translated right (+) or left (-).

It might be less confusing with the 2 factored out of the expression in the parentheses.