Equations and Inequalities in $|x \pm a|$.

When we graph numbers on a number-line, a basic rule states that: for any two numbers p and q_{r}

|p-q| = the distance between the points marked p and q.

$$\begin{array}{c|c} & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array}$$

This fact can be used to solve equations and inequalities in $|x \pm a|$.

• To solve an equation or inequality in |x-a|, think of |x-a| as the distance from the variable point x to the central point a. Then find all x for which the distance to the center, a, satisfies the given conditions on |x-a|.

Example 1. Solve the equation 1 = |x - 4|.

If we plot x and 4 on a number-line, then |x-4| is the distance between those points.

$$x - |x-4| - |x-4|$$

The equation requires that this distance be 1: any solution x is plotted as a point of distance 1 from the "center" 4. There are two such points, which we find by moving one unit to either side of 4.

$$4-1=3$$

$$4$$

$$4+1=5$$

So the solutions to 1 = |x - 4| are, x = 3 and x = 5.

Check:
$$(x = 3)$$
 $|3 - 4| = |-1| = 1$; $(x = 5)$ $|5 - 4| = |1| = 1$.

Example 2. Solve the inequality $1 \ge |x-4|$.

This inequality requires that the distance between the variable point x and the center 4 be 1 or less. We just found that, when x = 3 or x = 5, the distance is exactly 1. Any point in between 3 and 5 will be closer to 4. The set of such points is the interval with ends marked 3 and 5, and

center 4, including the ends. So the solution to $1 \ge |x-4|$ is the set $\{x \mid 3 \le x \le 5 | \text{ of numbers at least 3 but not more than 5. For instance, } x = 3.5 is a solution, since <math>|3.5-4| = |-0.5| < 1$.

Example 3. Solve the inequality 1 < |x-4|.

Now the distance between points marked x and 4 has to be greater than 1. Any point strictly to the left of 3 or to the right of 5 will satisfy the condition. The set of such points is a pair of intervals

as shown, with ends marked 3 and 5; the ends are not included. So the solution to 1 < |x-4| is, the set of all numbers, either less than 3 or greater than 5:

$$\{x \mid x < 3 \quad \text{or} \quad x > 5|.$$

There is a minus sign in the distance rule, for it speaks of |p-q|. The examples so far have involved |x-4|, which fits the form |p-q|. But |x+4|, for instance, does not. However, we can make it fit by a simple adjustment: write x+4=x-(-4); then an equation or inequality in |x+4| can be solved by applying the distance rule to |x-(-4)|, regarded as the distance from x to the central point -4. In general we do the same:

• To solve an equation or inequality in |x+a|, rewrite |x+a| as |x-(-a)|. This is the distance from the variable point x to the central point -a, so look for all x whose distance to -a satisfies the given conditions on |x+a|.

Example 4. Solve the inequality $1 \le |x+4|$.

Write the inequality as $1 \le |x-(-4)|$. Then it requires that x be plotted as a point of distance at least 1 from the central point -4.

$$-4-1=-5$$
 -4 $-4+1=-3$

The set of such points is a pair of intervals as shown, with ends, marked -5 and -3, included. So the solution to $1 \le |x+4|$ is,

$$\{x \mid x \le -5 \quad \text{or} \quad x \ge -3 | .$$

The last example involves two expressions in the form |p-q|.

Example 5. Solve the inequality |x-1| < |x-2|.

According to the distance rule, any solution x will be plotted as a point which is closer to the point 1 than to the point 2: the distance to 1 has to be less than the distance to 2. Now $1\frac{1}{2}$ is halfway between 1 and 2. Any point to the left of point $1\frac{1}{2}$ is closer to 1 than to 2. So the solution is,

Exercises. Solve the equation or inequality, and graph the solution. Identify the "central point" in each case.

1.
$$|x-2|=6$$
 Ans. The center is 2; moving 6 each way gives $x=-4$ or $x=8$.

2.
$$|x-2| < 6$$
 Ans. $\frac{\varphi}{-4}$ $\frac{\varphi}{2}$ $\frac{\varphi}{8}$

3.
$$|x-2| \ge 6$$
 Ans. $\frac{1}{-4}$ $\frac{1}{2}$ 8

4.
$$|x+3|=5$$
 Ans. Write $|x+3|=|x-(-3)|$, to suit the rule. The center is then -3 ; moving 5 each way gives $x=-8$ or $x=2$.

5.
$$|x+3| \ge 5$$
 Ans. The center is -3, and x has to be a distance at least 5 from the center.

6.
$$|x| = 4$$
 Ans. We can write $|x| = |x - 0|$, so the center is 0. Moving 4 either side of 0 gives $x = -4$ or 4.

7.
$$|x| < 4$$
 Ans. $\frac{9}{-4}$ 0 4

8.
$$|x+1| > |x-1|$$
 Ans. x has to be closer to 1 than to -1 , so the solution is the set $\{x \mid 0 < x\}$.