Practice for Quiz 4: Angles

The quiz will be given on Thursday, May 2.

Math 130 Kovitz Spring 2019

- 1. (a) Convert to radian measure as a multiple of π : 75°
 - (b) Convert to degree measure: $\frac{3\pi}{20}$. This number is in radian measure.
- 2. How long is an arc associated with an angle of 75° in a circle with radius 15 inches?
 - Give the exact answer in inches, in terms of π . An approximate decimal answer is not required.
- 3. How long is an arc associated with an angle of $\frac{3\pi}{20}$ in a circle with radius 25 feet?
 - Give the exact answer in feet, in terms of π . An approximate decimal answer is not required.
- 4. The moon is rotating at a rate of 1 revolution every 27 days. The radius is 1080 miles.

Find

- (a) the angular speed of the moon, expressed in radians per day (fractional value of π is a preferred answer);
- (b) the linear speed of a point on the surface of the moon, in miles per hour.
 - In this part, get decimal values from your calculator, with no π 's in the answer.
- 5. A right triangle has an acute angle θ with $\csc \theta = 13/5$.

Find the exact values of the other five trig ratios of θ .

Leave as fractions or get approximate decimals.

Answers follow on the next page.

Answers

- 1. (a) $5\pi/12$ radians.
 - (b) 27° .
- 2. $75\pi/4 = 25\pi/4 = 6.25\pi$ inches. That is about 19.63454 inches.

It was necessary to convert 75° to $75^{\circ} \times (\frac{\pi}{180^{\circ}})$ radians before applying the formula $s = r\theta$.

3. $\frac{3\pi}{20} \times 25 = \frac{15\pi}{4} = 3.75\pi$ feet. That is about 11.78097 feet.

No conversion was required; the angle was given in radian measure. Just apply the formula $s = r\theta$.

- 4. (a) $2\pi/27$ radians per day.
 - (b) It is $\left(\frac{2\pi}{27}\right) 1080 = 80\pi$ miles per day.

Dividing by 24, it becomes $\frac{80\pi}{24} = \frac{10\pi}{3} \approx 10.4720$ miles per hour.

- 5. $\sin \theta = \frac{5}{13}$ $\csc \theta = \frac{13}{5}$ $\cot \theta = \frac{12}{12}$ $\cot \theta = \frac{5}{12}$ $\cot \theta = \frac{12}{5}$