Practice for Test 1

Math 130 Kovitz Spring 2019 The test is on Tuesday, March 5.

Problems 1 through 52: True or false.

- 1. A line segment with endpoints at (-2,9) and (7,-1) will have a midpoint at (3.5,5).
- 2. If the coordinates of A are (-1,4) and the coordinates of the midpoint of \overline{AB} are (-3,6), the coordinates of B are (-5,8) and the length of the line segment AB is $4\sqrt{2}$.
- 3. The length of the line segment connecting the points whose coordinates are (-1, -2) and (1.5, 4) is exactly 6.5.
- 4. The straight line through (5, -3) and (8, 12) has a slope of 3.
- 5. The graph of 3y x = b is parallel to the graph of $y = -\frac{1}{3}x + b$.
- 6. The graphs of $\frac{1}{2}y + x = 3$ and y = 2x 6 are perpendicular and have the same x-intercept.
- 7. An equation of the line that is parallel to y = -3x + 6 and passes through the point (0, -3) is y = 3x 3.
- 8. The line with slope $=\frac{3}{2}$ through the point (5,-2) will also contain the point (8,0).
- 9. Given points A(0,0), B(2,1), and C(1,2), none of the lines AB, AC, or BC are parallel or perpendicular; but the lengths of lines AB and AC are equal.
- 10. An equation of the line that is parallel to y + 3x + 4 = 0 and has the same y-intercept as y = -5x 7 is y = 3x 7.
- 11. For the points A(4,-3) and B(2,3), an equation of the line that is perpendicular to \overline{AB} at its midpoint is $y=\frac{1}{3}x-1$.
- 12. The equation $y = \sqrt{x+1}\sqrt{x-1}$ has domain $[1,\infty)$, is an increasing function with x-intercept at (1,0), and the rest of its points lie only in the first quadrant.
- 13. The equation $y = \pm \sqrt{1 x^2}$ has domain [-1, 1], is not a function, and graphs as the unit circle.
- 14. The equation $y^2 = 25 x^2$ has domain [-5, 5], is not a function, and graphs as a circle with radius 5 units that is centered at the origin.
- 15. The equation $y = \sqrt{9-x^2}$ is an even function that has domain [-3,3], points in the first and second quadrants, and graphs as an upper semicircle with radius 3 units that is centered at the origin.
- 16. The graph of the equation $y^2 = \frac{24}{x}$ is located in the first and second quadrants, has no intercepts, and has asymptotes on the x- and y-axes.
- 17. The graph of the equation 3x + 5y + 8 = 0 is a straight line with points located in all four quadrants.

- 18. The graph of the equation $x^4 = y^4$ consists of the two straight lines y = x and y = -x with intercepts at the origin and (altogether) points in all four quadrants.
- 19. The graph of the equation $\sqrt{x} \cdot \sqrt{y} = 1$ is the portion of the graph of y = 1/x that is located in the first quadrant, and it has vertical and horizontal asymptotes but no intercepts.
- 20. The graph of $y = \sqrt{x+3} + 3$ is the same as the graph of the square root function $y = \sqrt{x}$, except that it was shifted 3 units to the right and 3 units up.
- 21. The equation $y = \pm x$ does not describe a function of x, but the equation $y^2 = x$ does describe a function of x.
- 22. The equation |y| = x describes y as a function of x.
- 23. In the expression f(7) = 11, the number 7 is a value of x (an input to the function), and there is no other real number a with f(7) = a.
- 24. If f(7) = 11 and f(4) = 11, f cannot be a function.
- 25. The fn. $f(x) = \sqrt{x+13} 17$ has domain $[13, \infty)$ and range $[-17, \infty)$.
- 26. The function $g(x) = \frac{x}{|x|}$ has domain all real numbers except zero and range all real numbers except zero.
- 27. The functions $f(x) = \frac{\sqrt{x+4}}{\sqrt{x+3}}$ and $g(x) = \frac{\sqrt{x+3}}{\sqrt{x+4}}$ have the same domain: $[-3, \infty)$.
- 28. The domain of the function $f(x) = \frac{9}{(x-9)^2 9}$ is all real numbers except 12.
- 29. When $f(x) = x^2 + x$, the expression $\frac{f(x+3) f(x)}{3}$ simplifies to 2x + 4.
- 30. When $f(x) = 2x^2 + 5x 3$ and $h \neq 0$, the expression $\frac{f(x+h) f(x)}{h}$ simplifies to 4x + 2h + 5.
- 31. The graph of $x^2 + xy + y^2 = 10$ has symmetry across the x-axis and symmetry across the y-axis.
- 32. The unit circle and the graph of the equation |y| = |x| each have all four unsual symmetries (x-axis, y-axis, origin, and y = x).
- 33. The graph of the equation y = |x| has symmetry across the x-axis.
- 34. The graph of the equation $y = x^2$ is symmetric across the x-axis.
- 35. The graph of the equation $y = \frac{1}{x}$ is symmetric through the origin and across the line y = x.
- 36. The graph of the equation y = 2x + 7 is the reflection through the origin of the graph of y = 2x 7. (Not sure? Try a few points on the first graph and reflect them through the origin and check if they are on the second graph.)
- 37. The graph of $y = \frac{1}{\sqrt{-x}}$ is the reflection across the x-axis of the graph of $y = \frac{1}{\sqrt{x}}$.

- 38. The graph of the function $f(x) = \sqrt{x-5} + 7$ is just the graph of the parent function $f(x) = \sqrt{x}$ moved 5 to the right and up 7.
- 39. The graph of the function g(x) = |x+1| + 1 is just the graph of the parent function g(x) = |x| moved 1 to the right and up 1.
- 40. The graph of the function $h(x) = (x+6)^3 11$ is just the graph of the parent function $h(x) = x^3$ moved 6 to the left and down 11.
- 41. The function $y = \sqrt{(x^2 1)x}$ is odd.
- 42. The equation $y = \frac{x^3 x}{1 2x^2}$ defines an odd function.
- 43. The function $y = |1 x^3|$ is odd.
- 44. The function $f(x) = \frac{2}{x}$ is odd.
- 45. The function f(x) = -1 is odd.
- 46. The equation $y = \sqrt{x^2 1}\sqrt{x^2 + 1}$ defines an even function.
- 47. The equation $y = \frac{1}{x} + \frac{x}{1 x^2}$ defines an odd function.
- 48. The function f(x) = 0 is both even and odd.
- 49. The function $y = \frac{\sqrt{x}}{\sqrt{x^2 1}}$ is an odd function.
- 50. The function $y = |x^3 x|$ is odd.
- 51. The function $y = \frac{1}{x^2} + x$ is neither even nor odd.
- 52. The function $y = (\sqrt{x})^4$ is neither even nor odd (if we consider functions only over the real numbers).

Answers follow on subsequent pages.

Answers.

- 1. False; the midpoint will be at (2.5, 4).
- 2. True.
- 3. True, because $2.5^2 + 6^2 = 6.5^2$.
- 4. False. The slope is 5.
- 5. False. It is parallel to the graph of $y = \frac{1}{3}x + b$.
- 6. False. The x-intercepts are the same, but the slopes are -2 and 2. Those slopes are not negative reciprocals.
- 7. False. A correct equation would be y = -3x 3.
- 8. False. A new point could be found by going up 3 and right 2; that produces the point (7,1). The point (8,0) was determined by going right 3 and up 2; that does not correspond to a slope of $\frac{3}{2}$. The slope to the point (8,0) is $\frac{2}{3}$. The slope is the change in y over the change in x.
- 9. True.
- 10. False. An equation could be y = -3x 7, as the original equation had slope of -3.
- 11. True.
- 12. True.
- 13. True.
- 14. True.
- 15. True.
- 16. False. It is located in the first and fourth quadrants.
- 17. False. There are no points in the first quadrant; and a straight line can never pass through all four quadrants.
- 18. True.
- 19. True.
- 20. False. It was shifted 3 units to the left and up 3.
- 21. False. Neither equation describes a function of x; both graphs fail the Vertical Line Test.
- 22. False. For example, the points (3,3) and (3,-3) are both on the graph, violating the Vertical Line Test.
- 23. True.
- 24. False. It is perfectly all right for a two different inputs to have the same output. This merely means that the function is not one-to-one.
- 25. False. The range is correct, but the domain is $[-13, \infty)$.
- 26. False. The domain is correct, but the range is just the two real numbers -1 and 1.

- 27. False. The listed domain is correct for g, but f has domain $(-3, \infty)$ because -3 is not in the domain.
- 28. False. The domain is all real numbers except 6 and 12.
- 29. True.
- 30. True.
- 31. False. It has symmetry through the origin and across the line y = x. But when you reflect across the x- or y-axis, the equation of the reflection comes out to be $x^2 - xy + y^2 = 0$. That equation is not equivalent to the original.

For the origin or the line y = x, the equation of the reflection comes up to be exactly the same as the original.

- 32. True.
- 33. False. It has symmetry across the y-axis.
- 34. False. It has symmetry across the y-axis.
- 35. True.
- 36. True.
- 37. False. It is the reflection across the y-axis.
- 38. True.
- 39. False. It was moved 1 to the left.
- 40. True.
- 41. False.

The domain is unbalanced. For example 2 is in the domain, but -2 is not.

The actual domain turns out to be $-1 \le x \le 0$ or $x \ge 1$. That domain is not balanced.

- 42. True.
- 43. False. For example f(2) = 7, but f(-2) = 9.
- 44. True.
- 45. False. It is an even function. Note that f(a) = -1 and f(-a) = -1 for all a, making f(-a) = f(a).
- 46. True. Note that the domain $x \le -1$ or $x \ge 1$ is a balanced domain, which supports the finding.
- 47. True. Because $f(a) = \frac{1}{a} + \frac{a}{1-a^2}$ and $f(-a) = \frac{1}{-a} + \frac{-a}{1-a^2} = -f(a)$.
- 48. True. Because f(a) = 0 = f(-a) and -f(a) = -0 = 0 = f(-a).
- 49. False. The domain is not balanced. For example 2 is in the domain, but -2 is not in the domain. Or just observe that the domain contains no negative values.
- 50. False. It is even. $f(a) = |a| \cdot |a^2 1| = |-a| \cdot |(-a)^2 1| = f(-a)$.
- 51. True.
- 52. True. The domain is $[0, \infty)$, which is unbalanced.