Practice for Test 2

Math 130 Kovitz Spring 2019 The test is on Tuesday, April 16.

Problems 1 through 71: True or false.

- 1. The standard form of the quadratic equation $y = 2x^2 32x + 100$ is $y = 2(x 8)^2 + 36$.
- 2. The standard form of the quadratic equation $y = 2x^2 16x + 100$ is $y = 2(x-4)^2 + 68$.
- 3. An alternate, equivalent form of the quadratic equation $y = x^2 + x + 1$ is $y = (x+1)^2 x$, but it is not in standard form.
- 4. The standard form of the quadratic equation $y = 4x^2 + 2x + 1$ is $y = 4(x + \frac{1}{2})^2$.
- 5. The graph of the quadratic equation $y = 4x^2 + 4x + 1$ has y-intercept at (0, 1), x-intercept at $(\frac{1}{2}, 0)$, and vertex at $(-\frac{1}{2}, 0)$.
- 6. The graph of the equation $y = 7x^2 + 4x + 1$ is a parabola with vertex at the point (-2/7, 3/7).
- 7. By factoring the equation $y = x^2 10x + 21$, it is easy to see that its x-intercepts are (3,0) and (7,0) and that its line of symmetry is x = 5.
- 8. The standard form of the equation $y = 8x^2 8x + 2$ is $y = 8(x \frac{1}{2})^2$, and the graph has y-intercept at (0,2) but only one x-intercept at $\left(\frac{1}{2},0\right)$.
- 9. The x-intercepts of the graph of $y = \frac{1}{2}(x-3)^2 8$ are (1,0) and (5,0).
- 10. The graph of $y = x^2 + 2x + 2$ has x-intercepts at (-1,0) and (-2,0).
- 11. The graph of $y = -x^2 x 1$ has no x-intercepts.
- 12. The graphs of $y = x^2 + 11x + 8$ and $y = -x^2 + 11x 8$ have the same x-intercepts.
- 13. The graph of $y = x^2 + 2.75x + 2$ has no x-intercepts.
- 14. The graphs of $y = x^2 + 11x + 8$ and $y = -x^2 11x 8$ have the same x-intercepts.
- 15. The graphs of two quadratic functions in the form $y = ax^2 + bx + c$ with the same value of a will have the same shape.
- 16. If a quadratic function whose graph opens up has its vertex above the x-axis, there will be no x-intercepts.
- 17. The inverse function of $f(x) = \frac{3x+1}{5x-2}$ is $g(x) = \frac{2x+1}{5x-3}$.
- 18. The inverse of the function $f(x) = \frac{(x-7)^3 5}{2}$ is the function $g(x) = 2\sqrt[3]{x+7} + 5$.

PRACTICE for TEST 2

- 19. The inverse of the function $f(x) = \frac{(x-7)^3 5}{2}$ is the function $g(x) = 2\sqrt[3]{x+7} + 10$.
- 20. The functions $f(x) = \frac{2x-7}{3}$ and the function $g(x) = \frac{3x+7}{2}$ are inverses of each other.
- 21. The functions $f(x) = \frac{2x-5}{3}$ and the function $g(x) = \frac{3}{2x-5}$ are inverses of each other.
- 22. The inverse of the function $y = x^3 1$ is the function $y = \sqrt[3]{x+1}$.
- 23. The function y = |x| does not have an inverse function.
- 24. The inverse function of $f(x) = \frac{1}{x+1}$ is $g(x) = \frac{1-x}{x}$.
- 25. A function that is symmetric across the line y = x must pass the horizontal line test and must be its own inverse.
- 26. A one-to-one function that is symmetric across the line y=x is its own inverse.
- 27. The graph of $y = 2^x$ passes the Horizontal Line Test, lies in the first and second quadrants, has a y-intercept at (0, 1), and has an asymptote on the negative x-axis.
- 28. On the graph of $y = 2^x$, if the 2nd coordinate of point B is the square of the first coordinate of point A, the first coordinate of point B must be twice the first coordinate of point A.
- 29. On the graph of $y = 2^x$, if the 1st coordinate of point B is 5 more than the 1st coordinate of point A, the 2nd coordinate of point B must be 5 times the 2nd coordinate of point A.
- 30. The function $y = (1/2)^x$ is decreasing.
- 31. The function $y = \log_2 x$ is a decreasing function whose graph lies in the first and second quadrants and has an x-intercept of (1,0).
- 32. The graph of $y = \log_2 x$ has its asymptote on the negative y-axis.
- 33. The equation $y = \log_2 x$ defines a one-to-one function.
- 34. The function $y = \log_2 x$ has domain all positive reals and range all reals.
- 35. The value of $\log_3 41$ is not between 27 and 81, but it is between $\log_3 27$ and $\log_3 81$.
- 36. The value of $\log_2(1/17)$ is between 1/32 and 1/16.
- 37. The value of $\log_2(1/17)$ is between -5 and -4.
- 38. The value of $\log_2(-5)$ is between -3 and -2.
- 39. The value of $\log_8(5/6)$ is between -1 and 0.
- 40. Since the functions $f(x) = \log_a x$ and $g(x) = a^x$ (with a > 0 and $a \neq 1$) are inverses of each other, it is surely true that $\log_a(a^p) = a^{\log_a p}$, assuming that p is positive.

PRACTICE for TEST 2

- 41. Since the functions $f(x) = \log_4 x$ and $g(x) = 4^x$ are inverses of each other, $4^{\log_4 \frac{1}{64}} = -3$.
- 42. Since the functions $f(x) = \log_3 x$ and $g(x) = 3^x$ are inverses of each other, $\log_3(3^7) = 81$.
- 43. Since the functions $f(x) = \log_3 x$ and $g(x) = 3^x$ are inverses of each other, $\log_3(3^0) = 1$.
- 44. When it is rewritten in exponential form, $\log b = c$ becomes $10^b = c$.
- 45. The inverse of the function $y = 10^x$ is the common logarithm function with equation $y = \log_{10} x$.
- 46. When it is rewritten in exponential form, $\log_9 2187 = 3.5$ becomes $9^{3.5} = 2187$.
- 47. In exponential form, $\log_2(32\sqrt{2}) = 5.5$ becomes $2^{5.5} = 32\sqrt{2}$.
- 48. In logarithm form, $4^{3/4} = 2\sqrt{2}$ becomes $\log_4\left(\frac{3}{4}\right) = 2\sqrt{2}$.
- 49. The difference of the logarithms of two positive numbers is equal to the logarithm of the quotient of the two numbers.
- 50. The logarithm of the fifth root of a positive real number is equal to 1/5 of the logarithm of the number.
- 51. The logarithm of the square of a positive real number is equal to the square of the logarithm of the number.
- 52. $\log\left(\frac{1}{ab}\right) = -(\log a + \log b).$
- 53. $\log 2.4 = \log 2 \times \log 0.4$.
- 54. $\log 2.4 = \log 2 + \log 0.4$.
- 55. $\log_2\left(\frac{1/8}{16}\right) = \log_2(1/8) \log_2 16 = -3 4 = -7.$
- 56. $\log_4 \left(13^{1/4}\right) = -1 \times \log_4 13.$
- 57. When $\log_b 2 = 1.637$ and $\log_b 2.72 = 2.363$, $\log_b 5.44 = 4$.
- 58. If $\log_b 2 = 1.637$ and $\log_b 2.72 = 2.363$, $\log_b 8 = 8 \times 1.637 = 13.096$.
- 59. When $\log_b 2 = 1.637$ and $\log_b 2.72 = 2.363$, $\log_b 8 = 3 \times 1.637 = 4.911$.
- 60. The equation $\log_2(x-1) \log_2 x = 1$ has no real-numbered solutions.
- 61. The equation $\log_3 x \log_3(x-1) = 2$ has only one real-numbered solution: x = 1.125.
- 62. The equation $\log(2x) \log(x-2) = 1$ doesn't have an integer solution.
- 63. The equation $\log(x) \log(x 99) = 1$ has only one real-numbered solution, x = 100.
- 64. The equation $\frac{\log_2(5x-1)}{\log_2 2x} = 1$ has only one solution x = 1/3, while the equation $\log_2(5x-1) \log_2 2x = 1$ has no solutions.

- 65. Change of base proves that $\log_{\sqrt{a}} b = \frac{1}{2} \log_a b$ in all cases.
- 66. It is always true that $\frac{1}{\log_b a} = \log_a b$, and it can be proved by changing the base of $\log_a b$ to base b.
- 67. $\log_b(-a) = -\log_b a$ in all cases.
- 68. Based on the approximation $\log 2 = 0.3$, $\log \sqrt[3]{2}$ is approximately equal to $\log \sqrt[10]{10}$.
- 69. Based on the approximation $\log 2 = 0.301$, an approximation for $\log_{64} 5$ is about 699/1806, which makes some sense since $\log_{64} 5$ was estimated to be between 1/3 and 1/2.
 - Hint: Start with $\log_{64} 5$ and change the base to base 10. Then rewrite 64 as a power of 2 and further simplify to get an approximate fraction.
- 70. Using change of base, the value of $\log_8 \sqrt[4]{2}$ comes out to be the exact fraction 1/12.
- 71. Using change of base, $\log_{32} 2^{0.32}$ is shown to be exactly equal to 0.01.

Answers follow on subsequent pages.

Answers.

- 1. False. It is $y = 2(x-8)^2 28$.
- 2. True.
- 3. True.
- 4. False. The correct standard form is $y = 4\left(x + \frac{1}{4}\right)^2 + \frac{3}{4}$.
- 5. False. The x-intercept is at the same point as the vertex: $\left(-\frac{1}{2},0\right)$.
- 6. True.
- 7. True. It factors as y = (x-3)(x-7).
- 8. True.
- 9. False. They are at (-1,0) and (7,0).
- 10. False. This graph has no x-intercepts; the graph of $y = x^2 + 3x + 2$ has those two x-intercepts.
- 11. True.
- 12. False. The x-intercepts of $x^2 + 11x + 8$ are both negative, while the x-intercepts of $-x^2 + 11x 8$ are both positive, the the additive inverses of the first two.

There are two rather simple ways to establish this.

First, note that—because of the result of substiting (-x) for x and (-y) for y—the graphs of $y = x^2 + 11x + 8$ and $y = -x^2 + 11x - 8$ must be reflections of each other through the origin.

Looking at the coordinates of specific points, a point on the first graph reflected through the origin must be on the second graph. The x-intercepts of the graph of $y = x^2 + 11x + 8$ are of the form (a,0). A point is reflected through the origin by changing the sign of both coordinates. So the point (-a,0) will be an x-intercept of the graph of $y = -x^2 + 11x - 8$. Because the line of symmetry of $y = x^2 + 11x + 8$ is clearly not the y-axis, its two x-intercepts cannot be $\pm a$.

That makes the statement of the problem false.

Reflecting through the origin by putting a pin in the origin and rotating 180 degrees, the x-intercepts on the positive x-axis end up on the negative x-axis and the x-intercepts on the negative x-axis end up on the positive x-axis. Unless the original intercept was only the point (0,0) or the original two x-intercepts were (-a,0) and (a,0), the resulting points will not be the same. Because the line of symmetry in this case is not the y-axis, the original x-intercepts were not $(\pm a,0)$.

Again, that makes the statement of the problem false.

- 13. True.
- 14. True. It is easy to see since each is the reflection of the other across the x-axis and two graphs reflected across the x-axis must have the same x-intercepts since points on the x-axis remain unchanged under a reflection across the x-axis.

ANSWERS to the PRACTICE for TEST 2

- 15. True. One is just a translation of the other. That is clear when both are expressed in standard form.
- 16. True.
- 17. True.
- 18. False. The inverse is $\sqrt[3]{2x+5}+7$.
- 19. False. The inverse is $\sqrt[3]{2x+5}+7$.
- 20. True.
- 21. False. These two functions are reciprocals of each other. The inverse of f is the function $f^{-1}(x) = \frac{3x+5}{2}$.
- 22. True.
- 23. True. It is not one-to-one; it fails the Horizontal Line Test.
- 24. True. Note that the function g(x) has an alternate form $\frac{1}{x}-1$.
- 25. True.
- 26. True.
- 27. True.
- 28. True.
- 29. False. It is 32 times as much.
- 30. True.
- 31. False. It is an increasing function which lies in the first and fourth quadrants.
- 32. True.
- 33. True.
- 34. True.
- 35. True.
- 36. False. It is between $\log_2(1/32)$ and $\log_2(1/16)$.
- 37. True.
- 38. False. The logarithms of negative numbers are not defined.
- 39. True.
- 40. True.
- 41. False. It is equal to $\frac{1}{64}$.
- 42. False. It is equal to 7.
- 43. False. It is equal to 0.
- 44. False. It becomes $10^c = b$.

ANSWERS to the PRACTICE for TEST 2

- 45. True.
- 46. True.
- 47. True.
- 48. False. It becomes $\log_4(2\sqrt{2}) = \frac{3}{4}$.
- 49. True.
- 50. True.
- 51. False. It is equal to twice the logarithm of the number.
- 52. True.
- 53. False. The other way around. $\log(2 \times 0.4) = \log 2 + \log 0.4$.
- 54. False. $\log(2 \times 0.4) = \log 2 + \log 0.4$. 2×0.4 is 0.8 not 2.4.
- 55. True.
- 56. False. It equals $(1/4) \times \log_4 13$.
- 57. True.
- 58. False. The value 8 is 2 cubed, so the answer is triple the log of 2.
- 59. True.
- 60. True.
- 61. True.
- 62. True. The unique solution is x = 2.5, but 2.5 is not an integer.
- 63. False. The one solution is x = 110. If the expression on the left were set equal to 2 instead of 1, 100 would be the correct solution.
- 64. False. The given solution is correct for the first equation but the second equation has the solution x = 1.
- 65. False. It proves that $\log_{\sqrt{a}} b = 2 \log_a b$.
- 66. True.
- 67. False. The logarithms of a and -a cannot both be defined as only one of the numbers a and -a could ever be positive.
- 68. True. One third of 0.3 is equal to one tenth of 1.
- 69. True. Note: Just after the change-of-base step, it was helpful—in the process of finding log 5—to replace 5 by 10/2 and take the log of that fraction.
- 70. True.
- 71. False. It is shown to be exactly equal to 0.064.