Practice for Test 3

Math 130 Kovitz Fall 2018 The test is on Tuesday, October 2.

Problems 1 through 9: True or false.

- 1. A line segment with endpoints at (-2, 9) and (7, -1) will have a midpoint at (3.5, 5).
- 2. If the coordinates of A are (-1,4) and the coordinates of the midpoint of \overline{AB} are (-3,6), the coordinates of B are (-5,8).
- 3. The length of the line segment connecting the points whose coordinates are (-1, -2) and (1.5, 4) is exactly 6.5.
- 4. The graph of 3y x = b is parallel to the graph of $y = -\frac{1}{3}x + b$.
- 5. The graphs of $\frac{1}{2}y + x = 3$ and y = 2x 6 are perpendicular and have the same x-intercept.
- 6. An equation of the line that is parallel to y = -3x + 6 and passes through the point (0, -3) is y = 3x 3.
- 7. The line with slope $=\frac{3}{2}$ through the point (5,-2) will also contain the point (8,0).
- 8. Given points A(0,0), B(2,1), and C(1,2), none of the lines AB, AC, or BC are parallel or perpendicular; but the lengths of lines AB and AC are equal.
- 9. An equation of the line that is parallel to y + 3x + 4 = 0 and has the same y-intercept as y = -5x 7 is y = 3x 7.

Problem 10: Solve this and show all the work.

10. The coordinates of points A and B are A(4, -3) and B(2, 3). What is an equation of the line that is perpendicular to \overline{AB} at its midpoint?

Answers follow on next page.

ANSWERS to the PRACTICE for TEST 3

- 1. False; the midpoint will be at (3.5, 4).
- 2. True.
- 3. True, because $2.5^2 + 6^2 = 6.5^2$.
- 4. False. It is parallel to the graph of $y = \frac{1}{3}x + b$.
- 5. False. The x-intercepts are the same, but the slopes are -2 and 2. Those slopes are not negative reciprocals.
- 6. False. A correct equation would be y = -3x 3.
- 7. False. A new point could be found by going up 3 and right 2; that produces the point (7,1). The point (8,0) was determined by going right 3 and up 2; that does not correspond to a slope of $\frac{3}{2}$. The slope to the point (8,0) is $\frac{2}{3}$. The slope is the change in y over the change in x.
- 8. True.
- 9. False. An equation could be y = -3x 7, as the original equation had slope of -3.
- 10. An equation for that line is $y = \frac{1}{3}x 1$.

The slope of the given line is $\frac{\Delta y}{\Delta x} = \frac{6}{-2} = -3$.

The slope of any perpendicular line is the negative reciprocal of -3, that is: $\frac{1}{3}$.

The perpendicular bisector must pass through the midpoint, which is $\left(\frac{4+2}{2},\frac{-3+3}{2}\right)=(3,0).$

The equation is of the form $y = \frac{1}{3}x + b$.

Substitute 3 for x and 0 for y and solve: $0 = \frac{1}{3}(3) + b$.

That yields b = -1.

The answer is therefore $y = \frac{1}{3}x - 1$.