Practice for Test 5

Math 130 Kovitz Fall 2018

The test is on Tuesday, November 27.

Problems 1 through 65: True or false.

- 1. The inverse function of $f(x) = \frac{3x+1}{5x-2}$ is $g(x) = \frac{2x+1}{5x-3}$.
- 2. The inverse of the function $f(x) = \frac{(x-7)^3 5}{2}$ is the function $g(x) = 2\sqrt[3]{x+7} + 5$.
- 3. The inverse of the function $f(x) = \frac{(x-7)^3 5}{2}$ is the function $g(x) = 2\sqrt[3]{x+7} + 10$.
- 4. The functions $f(x) = \frac{2x-7}{3}$ and the function $g(x) = \frac{3x+7}{2}$ are inverses of each other.
- 5. The functions $f(x) = \frac{2x-5}{3}$ and the function $g(x) = \frac{3}{2x-5}$ are inverses of each other.
- 6. The inverse of the function $y = x^3 1$ is the function $y = \sqrt[3]{x+1}$.
- 7. The function y = |x| does not have an inverse function.
- 8. The inverse function of $f(x) = \frac{1}{x+1}$ is $g(x) = \frac{1-x}{x}$.
- 9. A function that is symmetric across the line y = x must pass the horizontal line test and must be its own inverse.
- 10. A one-to-one function that is symmetric across the line y=x is its own inverse.
- 11. The graph of $y = 2^x$ passes the Horizontal Line Test, lies in the first and second quadrants, has a y-intercept at (0, 1), and has an asymptote on the negative x-axis.
- 12. On the graph of $y = 2^x$, if the 2nd coordinate of point B is the square of the first coordinate of point A, the first coordinate of point B must be twice the first coordinate of point A.
- 13. On the graph of $y = 2^x$, if the 1st coordinate of point B is 5 more than the 1st coordinate of point A, the 2nd coordinate of point B must be 5 times the 2nd coordinate of point A.

PRACTICE for TEST 5

- 14. The function $y = (1/2)^x$ is decreasing.
- 15. The function $y = \log_2 x$ is a decreasing function whose graph lies in the first and second quadrants and has an x-intercept of (1,0).
- 16. The graph of $y = \log_2 x$ has its asymptote on the negative y-axis.
- 17. The equation $y = \log_2 x$ defines a one-to-one function.
- 18. The function $y = \log_2 x$ has domain all positive reals and range all reals.
- 19. The value of $\log_3 41$ is not between 27 and 81, but it is between $\log_3 27$ and $\log_3 81$.
- 20. The value of $\log_2(1/17)$ is between 1/32 and 1/16.
- 21. The value of $\log_2(1/17)$ is between -5 and -4.
- 22. The value of $\log_2(-5)$ is between -3 and -2.
- 23. The value of $\log_8(5/6)$ is between -1 and 0.
- 24. Since the functions $f(x) = \log_a x$ and $g(x) = a^x$ (with a > 0 and $a \neq 1$) are inverses of each other, it is surely true that $\log_a(a^p) = a^{\log_a p}$, assuming that p is positive.
- 25. Since the functions $f(x) = \log_4 x$ and $g(x) = 4^x$ are inverses of each other, $4^{\log_4 \frac{1}{64}} = -3$.
- 26. Since the functions $f(x) = \log_3 x$ and $g(x) = 3^x$ are inverses of each other, $\log_3(3^7) = 81$.
- 27. Since the functions $f(x) = \log_3 x$ and $g(x) = 3^x$ are inverses of each other, $\log_3(3^0) = 1$.
- 28. When it is rewritten in exponential form, $\log b = c$ becomes $10^b = c$.
- 29. The inverse of the function $y = 10^x$ is the common logarithm function with equation $y = \log_{10} x$.
- 30. When it is rewritten in exponential form, $\log_9 2187 = 3.5$ becomes $9^{3.5} = 2187$.
- 31. In exponential form, $\log_2(32\sqrt{2}) = 5.5$ becomes $2^{5.5} = 32\sqrt{2}$.
- 32. In logarithm form, $4^{3/4} = 2\sqrt{2}$ becomes $\log_4\left(\frac{3}{4}\right) = 2\sqrt{2}$.

PRACTICE for TEST 5

- 33. The difference of the logarithms of two positive numbers is equal to the logarithm of the quotient of the two numbers.
- 34. The logarithm of the fifth root of a positive real number is equal to 1/5 of the logarithm of the number.
- 35. The logarithm of the square of a positive real number is equal to the square of the logarithm of the number.

36.
$$\log\left(\frac{1}{ab}\right) = -(\log a + \log b).$$

- 37. $\log 2.4 = \log 2 \times \log 0.4$.
- 38. $\log 2.4 = \log 2 + \log 0.4$.
- 39. $\log_2\left(\frac{1/8}{16}\right) = \log_2(1/8) \log_2 16 = -3 4 = -7.$
- 40. $\log_4\left(13^{1/4}\right) = -1 \times \log_4 13.$
- 41. When $\log_b 2 = 1.637$ and $\log_b 2.72 = 2.363$, $\log_b 5.44 = 4$.
- 42. If $\log_b 2 = 1.637$ and $\log_b 2.72 = 2.363$, $\log_b 8 = 8 \times 1.637 = 13.096$.
- 43. When $\log_b 2 = 1.637$ and $\log_b 2.72 = 2.363$, $\log_b 8 = 3 \times 1.637 = 4.911$.
- 44. The only solution to the equation $\log_3(1-2x) + \log_3 x = -2$ is x = 1/3.
- 45. The only solution to the equation $\log_2(1-x) + \log_2 x = -2$ is x = 1/2.
- 46. The equation $\log_6(13-x) + \log_6(x) = 2$ has two solutions.
- 47. The equation $\log_6(17-2x) + \log_6(x) = 2$ has one solution: x = 4.
- 48. The equation $\log_2(x+3) + \log_2(-x) = 1$ has no real-numbered solutions.
- 49. The equation $\log_4(x+1) + \log_4 x = 1/2$ has two real-numbered solutions, one of which is x = 1.
- 50. The equation $\log_2(x+1) + \log_2 x = 1$ has no real-numbered solutions.
- 51. The equation $\log_2(x-1) \log_2 x = 1$ has no real-numbered solutions.
- 52. The equation $\log_3 x \log_3(x-1) = 2$ has only one real-numbered solution: x = 1.125.
- 53. The equation $\log(2x) \log(x-2) = 1$ doesn't have an integer solution.

PRACTICE for TEST 5

- 54. The equation $\log(x) \log(x 99) = 1$ has only one real-numbered solution, x = 100.
- 55. The equation $\frac{\log_2(5x-1)}{\log_2 2x} = 1$ has only one solution x = 1/3, while the equation $\log_2(5x-1) \log_2 2x = 1$ has no solutions.
- 56. Change of base proves that $\log_{\sqrt{a}} b = \frac{1}{2} \log_a b$ in all cases.
- 57. It is always true that $\frac{1}{\log_b a} = \log_a b$, and it can be proved by changing the base of $\log_a b$ to base b.
- 58. $\log_b(-a) = -\log_b a$ in all cases.
- 59. Based on the approximation $\log 2 = 0.3$, $\log \sqrt[3]{2}$ is approximately equal to $\log \sqrt[10]{10}$.
- 60. Based on the approximation $\log 2 = 0.301$, an approximation for $\log_{64} 5$ is about 699/1806, which makes some sense since $\log_{64} 5$ was estimated to be between 1/3 and 1/2.
 - Hint: Start with $\log_{64} 5$ and change the base to base 10. Then rewrite 64 as a power of 2 and further simplify to get an approximate fraction.
- 61. Using change of base, the value of $\log_8 \sqrt[4]{2}$ comes out to be the exact fraction 1/12.
- 62. Using change of base, $\log_{32} 2^{0.32}$ is shown to be exactly equal to 0.01.
- 63. The number of bacteria in a culture is increasing according to the law of exponential growth, the initial population is 200 bacteria, and the population after 8 hours will be double the population after 4 hours; so after 2 hours there will be exactly 300 bacteria.
- 64. The number of fruit flies in a colony is increasing according to the law of exponential growth, with the population after 2 hours exactly equal to 2 fruit flies and the population after 32 hours equal to 32 fruit flies; so the number of fruit flies after 8 hours will be exactly 8 fruit flies.
- 65. The number of fruit flies in a colony is increasing according to the law of exponential growth, with the population after 2 hours exactly equal to 2 fruit flies and the population after 32 hours equal to 32 fruit flies; so the number of fruit flies after $9\frac{1}{2}$ hours will be exactly 4 fruit flies.

Answers follow on subsequent pages.

ANSWERS to the PRACTICE for TEST 2

Answers.

- 1. True.
- 2. False. The inverse is $\sqrt[3]{2x+5}+7$.
- 3. False. The inverse is $\sqrt[3]{2x+5} + 7$.
- 4. True.
- 5. False. These two functions are reciprocals of each other. The inverse of f is the function $f^{-1}(x) = \frac{3x+5}{2}$.
- 6. True.
- 7. True. It is not one-to-one; it fails the Horizontal Line Test.
- 8. True. Note that the function g(x) has an alternate form $\frac{1}{x}-1$.
- 9. True.
- 10. True.
- 11. True.
- 12. True.
- 13. False. It is 32 times as much.
- 14. True.
- 15. False. It is an increasing function which lies in the first and fourth quadrants.
- 16. True.
- 17. True.
- 18. True.
- 19. True.
- 20. False. It is between $\log_2(1/32)$ and $\log_2(1/16)$.
- 21. True.
- 22. False. The logarithms of negative numbers are not defined.
- 23. True.

ANSWERS to the PRACTICE for TEST 2

- 24. True.
- 25. False. It is equal to $\frac{1}{64}$.
- 26. False. It is equal to 7.
- 27. False. It is equal to 0.
- 28. False. It becomes $10^c = b$.
- 29. True.
- 30. True.
- 31. True.
- 32. False. It becomes $\log_4(2\sqrt{2}) = \frac{3}{4}$.
- 33. True.
- 34. True.
- 35. False. It is equal to twice the logarithm of the number.
- 36. True.
- 37. False. The other way around. $\log(2\times0.4) = \log2 + \log0.4.$
- 38. False. $\log(2 \times 0.4) = \log 2 + \log 0.4$. 2×0.4 is 0.8 not 2.4.
- 39. True.
- 40. False. It equals $(1/4) \times \log_4 13$.
- 41. True.
- 42. False. The value 8 is 2 cubed, so the answer is triple the log of 2.
- 43. True.
- 44. False. It also has a solution x = 1/6.
- 45. True.
- 46. True. They are x = 4 and x = 9.
- 47. False. It also has the solution x = 4.5.

ANSWERS to the PRACTICE for TEST 2

- 48. False. It has the solutions x = -2 and x = -1.
- 49. False. The only real-numbered solution is x = 1.
- 50. False. The unique solution is x = 1.
- 51. True.
- 52. True.
- 53. True. The unique solution is x = 2.5, but 2.5 is not an integer.
- 54. False. The one solution is x = 110. If the expression on the left were set equal to 2 instead of 1, 100 would be the correct solution.
- 55. False. The given solution is correct for the first equation but the second equation has the solution x = 1.
- 56. False. It proves that $\log_{\sqrt{a}} b = 2 \log_a b$.
- 57. True.
- 58. False. The logarithms of a and -a cannot both be defined as only one of the numbers a and -a could ever be positive.
- 59. True. One third of 0.3 is equal to one tenth of 1.
- 60. True. Note: Just after the change-of-base step, it was helpful—in the process of finding $\log 5$ —to replace 5 by 10/2 and take the \log of that fraction.
- 61. True.
- 62. False. It is shown to be exactly equal to 0.064.
- 63. False. The base is $\sqrt[4]{2}$. So after two hours there will be $200(\sqrt[4]{2})^2 = 200\sqrt{2} \approx 282.8247$ bacteria.
- 64. False. The doubling time is $7\frac{1}{2}$ hours, so once 15 hours (two doubling times) have elapsed since the time of "after 2 hours," there will be 8 fruit flies. That will happen at time after 17 hours.
- 65. True. The doubling time is $7\frac{1}{2}$ hours, so after $9\frac{1}{2}$ hours the number of fruit flies would have doubled once since "after 2 hours." The 2 fruit flies would have become 4 fruit flies. Seven 7 hours and thirty minutes would have elapsed since "after 2 hours," and that is exactly one doubling time.