Homework 10b

(due March 20, along with Challenge Problem 4)
Math 130 Kovitz 2018

In Problems 1–5, let f be the function given by

$$f(x) = \sqrt{x+4} - 5.$$

1. Decide if f is one-to-one. One method is to graph it and check the horizontal line test.

Determine the domain and range of f.

Determine the domain and the range of f^{-1} .

Find the graph of the inverse of f by three methods:

- (a) by visually reflecting the graph of f across the diagonal line y = x,
- (b) by reflecting the endpoint and the intercepts of graph of f, connecting them with a smooth curve, and extending the curve to give it the same shape as the graph of f.
- (c) by producing an equation for the inverse function and graphing it over the known domain of f^{-1} . The formula over its entire implied domain and the inverse function we seek here are *not* the same, because the inverse has a smaller domain than the maximal domain of the underlying formula.
- 2. Find a formula for $f^{-1}(x)$ and state the domain.
- 3. Find $f^{-1}(f(-3))$ and $f(f^{-1}(-3))$.
- 4. Test the graph of f for symmetry across the line y = x.
- *5. Compare $f^{-1}(-3)$ and $[f(-3)]^{-1}$. Are they equal?

In Problems 6–9, let f be the function given by

$$f(x) = \frac{6-x}{1-x}.$$

- 6. Write an equation of the inverse relation.
- 7. Test the graph of $y = \frac{6-x}{1-x}$ for symmetry across the line y = x

(that is, determine whether $y = \frac{6-x}{1-x}$ is its own inverse).

- 8. Is the inverse relation a function?
- 9. If you answered yes to Problem 9, find a formula for $f^{-1}(x)$, and recheck your solution to Problem 8 in light of that formula.
- 10. Let $f(x) = \frac{5x-3}{4x-7}$, assuming f is one-to-one. Find a formula for $f^{-1}(x)$.

As a check, find: f(1), f(2), $f^{-1}(-2/3)$, and $f^{-1}(7)$. Do these four calculations support the correctness of your formula for f^{-1} ? Why?