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1 Introduction

P. Riley’s “On the probability of occurrence of extreme space weather events”
[1] has been widely quoted in the popular press. It gives the impression that
from accepted statistical analysis one can predict that the probability of a solar
storm worse than the worst ever observed (the Carrington event) in the next
decade is on the order of 12%, surprisingly high. This estimate was obtained
from a power law model. The conclusion of [1] speaks for itself:

“In closing, we reiterate that our primary aim in this study was to
introduce a technique for estimating the probability of occurrence of
extreme space weather events. Additionally, our analysis has shown
that a relatively rich subset of space physics data can be approxi-
mated by power law distributions. Our results allowed us to answer
a basic question, at least in an approximate way: How likely are such
events? . . . our results overall suggest that the likelihood of another
Carrington event occurring within the next decade is ∼ 12%.”

Even a cursory reading of Riley’s paper will show how shaky is this con-
clusion. It obtains probability estimates from various data sets in various ways
unified by a power law assumption. The estimates vary over two orders of mag-
nitude, from 1.5% (paragraph [39]) to an unbelievable 85% (paragraph [31]).

1P. Riley, Space Weather 10 (2012), S02012
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The paper itself rejects the 85% estimate as “not credible” (paragraph [31]).
However, it was obtained by the same methods which yielded the 12% estimate
using data equally reliable. The 85% estimate is obtained by applying the power
law assumption to data probably comprising over a thouand observations of
Coronal Mass Ejections (CME). After this estimate turned out too high to be
credible, the paper reapplied the same method to a subset of a few tens of the
CME’s to obtain the 12% estimate (which was also obtained from another data
set). Such apparent “cherry-picking”2 of the data needs to be carefully justified.
The paper does briefly address this issue, but unconvincingly in my opinion.

A previous analysis [3] of Riley’s paper made this and more technical points.
There were two main criticisms.

One questioned the power law model itself. The other noted that the paper
is so vaguely written as to make it difficult to impossible to check the arithmetic
leading to its various probability estimates. However, sometimes it was possible
to guess (e.g., from the figures) the assumptions sufficiently to check the arith-
metic, and in these cases my arithmetic usually produced estimates differing by
an order of magnitude from the paper’s.

Since I posted [3], I have found new guesses which enable one to obtain
some (but not all) of the paper’s probability estimates. A major exception is
the paper’s paragraph [39] estimate (based on a “Dst” data set) of probabil-
ity 12% for the occurrence in the next decade of a geomagnetic storm worse
than the Carrington event. The seemingly most probable new guess yields a
corresponding estimate of 27%, which seems too high to be believable. Another
guess yields 16%, which is in the same ballpark as the paper’s 12% but differs
significantly enough to require further investigation. The only explanation for
the discrepancy seems to be that either my arithmetic or the paper’s must be
wrong.3 The various estimates based on the new guesses will be reported in the
sections dealing with the various data sets.

I have also stumbled upon what seem surprising anomalies in the data re-
ported. These will be discussed in detail below.

Each data set has its own quirks and apparent anomalies, but they have a
common core which is easy to perceive when pointed out, but which I find very
puzzling. They seem almost like a detective mystery waiting for some Sherlock
Holmes.

2 Introduction to the mystery

This section concisely introduces the mystery for those who already have some
familiarity with Riley’s paper [1] . Full discussion and definitions will be post-
poned to subsequent sections.

Riley’s paper analyzes four data sets, Solar Flares, Coronal Mass Ejections
(CME), Geomagnetic Storms, and Ice Core Samples. For each data set there is

2i.e., selective rejection of parts that do not support a desired conclusion
3I would welcome the opportunity to go over the arithmetic with any one who has read

the paper carefully enough to do so. This applies also to the author.
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a Figure(a) and a Figure(b), e.g., Figures 2(a) and 2(b) for Solar Flares.
Figure (a) is a histogram constructed from observations. Roughly speaking,

it may be considered as representing the log-log graph of the probability density
function (pdf) p = p(x) for the probability distribution from which the data were
drawn,4 which is assumed to be a power law:

p(x) =
{
Cαx

−α xmin ≤ x <∞
0 otherwise.

Here α > 1 and Cα := (α − 1)xα−1
min is the constant which normalizes the total

probability to 1.
The paper’s equation (1) which defines the power law does not mention

xmin (and is therefore incorrect), but inclusion of xmin is necessary for the
mathematics to make sense. One of the difficulties in interpreting the paper’s
analyses of the various data sets is that the value of xmin is never explicitly
given, but has to be guessed from the figures or other given data.

Figure (b) is a graph, not a histogram. It is the experimentally observed
graph, in log-log coordinates, of the complementary cumulative distribution
function (CCDF) P , which for a pdf p = p(x), Riley denotes5

P (x ≥ xcrit) =
∫ ∞
xcrit

p(x′) dx′ . Riley’s (2)

When p is given by the power law p(x) = Cαx
−α, which is the paper’s premise,

then the CCDF is also given by a power law but with exponent α − 1 one less
than the exponent α of the pdf:

P (x ≥ z) =
(

z

xmin

)−(α−1)

.

Here is the mystery. Since Fig. (a) is in log-log coordinates, it should ap-
proximate a straight line with slope −α. Fig. (b) should approximate a line
with slope −(α − 1). But for three of the four data sets, the slopes of Figures
(a) and (b) are almost the same!

The exception is the Geomagnetic Storm data set, for which the slope of
Fig. (a) is −3.7, compared to −3.0 for Fig. (b). That is still a slope quite a bit
steeper for Fig. (b) compared to the expected −2.7.

Table 1 gives all the measured slopes, accurate to at least ±0.1. “Accuracy”
refers to estimated maximum error, which is never more than ±0.1—typical

4More precisely, before passing to log-log coordinates, the histogram is an approximation
to a constant times graph of the pdf, i.e. the histogram is not normalized to total probability
1.

5Riley’s notation is unusual. In his P (x ≥ xcrit), the lower-case x stands for a random
variable, but xcrit is a real number. When quoting Riley or discussing his equations, we have
to use his notation, but elsewhere our notation will be either explicitly defined or standard.
In particular, when we write p(x) = Cαx−α, we mean that p is the function which assigns to
a real variable x the number Cαx−α. It would probably have been better to use a different
letter than x, since Riley uses x for a random variable, but this was only noticed after all the
type was set.
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errors are probably much less. Appendix 2 on measurement explains how the
accuracy is determined.

Riley’s claimed slopes are described in syntax often making it ambiguous
whether they refer to Fig. (a) or (b). The previous analysis [3] assumed that
they referred to (a), but in light of subsequent information, I now would guess
that at least some of them refer to (b).6 When ambiguous, the claimed slope is
listed under Fig. (b) even though it might refer to (a).

The measured “slope” of Figs. (a) refers to the dashed line of best fit accord-
ing to the usual “least squares” (LS) method. Riley doesn’t furnish a line of
best fit with the “maximum likelihood estimate” (MLE) of slope for Figs. (a),
which is strange given that most of the final probability estimates are calculated
using that MLE estimate. If an MLE line had been furnished for Figs. (a), in
most cases it would have been obvious that it didn’t well fit the data and so
should not have been used for the probability estimates. For Figs. (b), Riley
furnishes both a dashed LS line and a solid MLE line.

3 History of this paper

Having presented the mystery on which the reader can ponder, it seems appro-
priate to explain how I came on it. Most readers would be unlikely to notice
that the slopes of Figures (a) and (b) are generally inconsistent with the paper’s
power law premise, and I did overlook this for months. When my first analysis
[3] was posted, I was unaware of it.

When I first read in the popular press Riley’s extensively reported estimate
that there is about a 12% probability of a magnetic storm worse than Carrington
in the next decade, I was skeptical. An initial reading of his paper [1] did not
reassure me.

His equation (1) defines “power law” as a pdf of the form p(x) = Cx−α

where “C is a constant determined from where the power law intercepts the
y axis”. This is incorrect. The graph of a power law never intercepts the y-
axis. For α > 1, it cannot approach the y-axis because then the integral of p
over the positive x-axis would diverge. The paper’s equation (1) definition of
“power law” entirely omits the critical parameter xmin that defines the interval
[xmin,∞) which is the domain of p. “How well could a paper with such a glaring
error in its very first equation have been refereed?”, I asked myself. A bad typo
in its equation (7) did not help matters.

In view of that, I was motivated to check everything. I could see immedi-
ately that the paper’s “cherry-picking” of the Coronal Mass Ejection (CME)
data7 was highly questionable, but I also wondered if the paper’s probabil-

6A message to the author specifically asking about this was ignored, along with three other
messages asking about various points in [1].

7After an analysis of CME’s above 700 km/sec produced a result which the paper charac-
teriazed as “not credible”, it restricts to a few tens of CME’s above 2000 km/sec to obtain its
main estimate that the probability of an event worse than Carrington in the next decade is
12%. If the paper’s methods were valid, then the original analysis of speeds over 700 should
have produced a believable result.
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TABLE 1 --- measured slopes

Figure Measured accuracy Riley’s claimed
slope "slope"

2(a) dashed LS -0.84 +-.09 -1.8 (unambiguous)

2(b) solid MLE -0.84 +-.04 -0.84 (unambiguous)
2(b) dashed LS -0.85 +-.04

4(a) dashed LS -3.11 +-.09

4(b) solid MLE -3.12 +-.06 -3.2 (ambiguous)
4(b) dashed LS -3.29 +-.06

5 solid MLE -6.08 +-.02 -6.1 (ambiguous)
5 dashed LS -6.63 +-.02

8(a) dashed LS -3.69 +-.07

8(b) solid MLE -3.00 +-.09 -3.2 (ambiguous)
8(b) dashed LS -3.05 +-.09

10(a) dashed LS -1.84 +-.04

10(b) solid MLE -1.98 +-.02 -2.0 (ambiguous)
10(b) dashed LS -2.09 +-.02
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ity estimates had been correctly obtained even assuming the legitimacy of the
“cherry-picking”. The discussion of the CME data is unacceptably vague. In
particular, the paper’s paragraph [24] reference to “a MLE fit” and “a revised
slope of −6.1” is ambiguous as to whether this refers to the slope of the pdf or
the CCDF.

I wrote the author, asking which was meant. He chose not to reply, nor
did he reply to three other courteously worded inquiries about various points
in the paper. Even at that early stage, I had noticed the anomaly that the
slopes of Figures 4(a) and 4(b) seemed about the same, though I wasn’t sure
because I had not learned how to accurately measure the .pdf file of the paper.8

I was measuring the original published figures with a physical ruler, which didn’t
afford enough resolution to be sure that their slopes could not differ by one as
they should. I raised that point in one of my unanswered messages.

Careful authors of scientific papers are usually happy when anyone reads
their work carefully enough to ask detailed questions. If an author refuses to
reply, this is cause for reasonable suspicion that he may have no good reply.

I decided that the only way to resolve the ambiguity was to analyze inde-
pendently the original raw data. On the website which Riley cites as furnishing
his data for Coronal Mass Ejections (CME),9 I found only 20 observations of
CME’s above 2000 satisfying the paper’s stated criteria. These implied an ex-
ponent α = 5.9 for a pdf p(x) = Cx−α, which seemed reasonably close to the
paper’s ambiguous claim of “revised slope of −6.1 ” if “revised slope” referred
to −α.

The paper’s analyses of the other data sets also used ambiguous language
which did not clearly distinguish between slopes of pdf and CCDF. However,
the language of the other sets was perhaps weighted slightly more toward the
CCDF interpretation.

Since the author had already ignored four inquiries, there seemed no hope of
obtaining clarification from that quarter. I made the assumption, in retrospect
perhaps too hastily, that the same interpretation of phrases similar to “MLE
slope” would apply to all data sets. I thought that the issue had already been
settled in favor of α rather than α− 1 for the CME data, and applied the same
assumption to the other data sets. This resulted in probability estimates (for the
probability of an event worse than Carrington in the next decade) which were
generally too high to be believable. These were reported in my initial analysis [3]
of Riley’s paper. Later I noticed that if for some of the data sets, one assumed
that “MLE fit” and the like referred to the CCDF instead of pdf, one obtained
Riley’s probability estimates (possibly under other auxiliary assumptions which
seemed conceivable).

Then for the CME data set, another complication arose. After David Rood-
man showed me how to measure the high-resolution .pdf of Riley’s paper under
high magnification, I noticed that the paper’s Figure 5 showed many more than

8Here “.pdf” refers not to “probability density function” abbreviated “pdf” but to a com-
puter file with extension “.pdf”, like “riley.pdf”, which is intended for the Adobe Acrobat
application.

9Cited in paragraph [29] as /http://cdaw.gsfc.nasa.gov/CME list/
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the 20 observations of CME’s above 2000 that I had extracted from the raw
data. In the printed version, the individual observations are so close together
that they cannot be distinguished, but under high magnification of the .pdf file
they can be. They are still a bit hard to distinguish, but they could be counted,
though I have not done so. I estimate that there are about 50 observations in
that range, definitely far above the mere 20 that I found in the original data. 10

All else being equal, the difference between α = 6.1 and α − 1 = 6.1 can
make a difference of an order of magnitude for the final probability estimate.
In this case, the final estimate happened to be not much affected because of
the difference in the number of observations just mentioned (Riley’s ∼ 50 vs.
the 20 which I found). That is, “all else” was not equal. When 50 observations
instead of 20 are used with the interpretation that α−1 = 6.1, the paper’s final
probability estimate of 12% is obtained.

This calls into question my original assumption that “MLE fit” and the like
would refer to the slope of the pdf, as was my previous best guess. My current
best guess in light of the information which has surfaced in the meantime is
that Riley’s references to “MLE fit” and the like may refer to the slope α − 1
of the CCDF. How to obtain some of the paper’s probability estimates from
this assumption will be presented in the discussions of the individual data sets.
However, important anomalies still remain.

Had the author answered my initial query as to his meaning for “MLE
fit” of the CME data, the present paper might never have been written. The
previous analysis [3] would still have been posted but it might have been written
differently, taking into account the author’s response.

4 The Solar Flare data set–Part 1

The original “Analysis” [3] ignored this data set because it is the only one of the
four which does not yield a final estimate for the probability of a solar storm
worse than Carrington in the next decade. (That is because the strength of
solar flares associated with Carrington is unknown.) However, recently I have
found a major anomaly which is hard to understand. The following quote from
the paper’s paragraph [24] introduces it:

“In Figure 2b we show the CCDF, i.e., the probability of an event
occurring that exceeds some critical peak rate, as a function of peak

10It’s is not clear why Riley obtained so many more CME’s with speeds above 2000 than I
did. I wonder if it could be due to data selection. He reports so-called “quadratic speeds” at
“the highest measurement possible”. That is also what I reported, so we should have obtained
the same number. For some observations the website containing the data reports a “linear
speed” but no “quadratic speed”. (That happens when only two measurements of CME speed
were made.) If Riley defaulted to “linear” when “quadratic” was not available, that could
explain the difference. (But this is only a guess; there is nothing in the paper indicating that
this could have occurred.)

However, the large difference between his MLE estimate α = 7.1 (α−1 = 6.1, assuming that’s
what he meant) and the MLE estimate α = 5.9 obtained from my data is unexplained and
noteworthy.
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rate. . . . We note that the slope of the event-frequency plot is ∼ −1.8
in agreement with previous studies [Lin et al., 1984; Dennis, 1985],
while the slope (computed using MLE) for the CCDF is −0.84. The-
oretically, we would expect the latter to be one less than the former,
which, given the errors associated with computing the former, is
relatively consistent.”

The quoted study of Dennis [4] (which uses a different data set than Riley) does
claim power law behavior p(x) = Cx−α with exponent α ∼ 1.8, and Lin, et
al. [5] plot an observed CCDF with slope which they estimate as “about −1”,
which would give α = 1 + 1 = 2. As Riley indicates, the difference between
α = 1.8 and α = 2 is probably not significant in this context.

Strangely, Riley seems unaware that the measured slope of his Figure 2(a) is
−0.8, as opposed to his paragraph [24] claim that it is −1.8.11 12 By “measured
slope”, I mean the slope of the dashed LS line in Fig. 2(a) which appears to well
fit the data over the range [104, 105] for which it was calculated. If a solid MLE
line with slope −1.8 were plotted on Riley’s Figure 2(a), it would obviously not
well fit any portion of the data.

I cannot conveniently exhibit this in a figure because there are too many data
points in Riley’s Figure 2(a) to plot by hand. and I do not have the facilities to
undertake an independent analysis of large quantities of raw data. However, the
reader can verify this by obtaining a high-resolution .pdf copy of [1] from the
Wiley website given in footnote 14 and using the “measuring tool” (a part of
the Adobe Acrobat program) at 400% magnification to construct an MLE line
of slope −1.8. The difference between the dashed LS line with slope −0.8 and
the MLE line does not look enormous, but it is different enough that it could
not be a product of some error. The portions of the data which do appear to lie
more or less on a line of negative slope but are not in the range [104, 105] have
absolute slope even less than the 0.8 of the dashed line. There is no way that a
line of slope −1.8 could fit this data.

This is not the only major anomaly in the paper’s discussion of the solar
flare data—the other will be discused in the Solar Flares–Part 2 section. Neither
anomaly affects the paper’s probability estimates, but does call into question its
care in the data analysis. It is just another reason (starting with its incorrect
equation (1)) to check everything independently before accepting the paper’s
conclusions.

11Since the scales for Fig. 2(a) are different on the horizontal and vertical axes, I should
make clear that “measured slope” means the slope that would be seen were the scales the
same, i.e., “measured slope” should approximate −α for a pdf p(x) = Cx−α. See Appendix 2
for the details of how the measurements were carried out.

12Could the author have obtained an MLE estimate of slope −1.8 and simply assumed
without checking that it would well represent the slope of Figure 2(a)? If so, that should be
taken into account in assessing the probable accuracy of other statements, particularly MLE
estimates in ambiguous contexts.
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5 The ice core data set

The paper’s paragraph [40] introduces the ice core data:

“[40] Finally in the chain of space weather parameters from the Sun
to the Earth, we arrive at space weather records potentially con-
tained within ice cores. The value of these data lies in their long
time span going back more than 400 years; however, they are not
without caveats. First, while the nitrate spikes are generally believed
by space physicists to be a record of large, historical space weather
events, [McCracken, et al., 2001], ice core chemists are skeptical.
They posit that no viable mechanism exists by which Solar Proton
Events could be imprinted within the ice, suggesting instead that
high concentrations of sea salt provide a simpler and more consis-
tent explanation for the deposition of aerosol nitrates.”

Since Riley’s paper was published, Wolff, et al., [7] has appeared which
asserts the following:13

• A major nitrate spike in 1859 (the year of Carrington) is observed in only
one out of five Greenland ice cores. The core in which it was observed is
the one from which were taken the 70 observations of McCracken, et al.,
[2] which form Riley’s data set. No spike in that year was observed in
eight Antartic ice cores.

• The dating to 1859 of that major spike is questionable. Other Greenland
ice cores show a spike in 1863 which may correspond to the 1859 spike of
McCracken, et al.

• Detailed chemical analyses of the 1863 spike just mentioned (which was
not undertaken for the McCracken, et al., spike) show signatures of nitrate
from forest fires. This could be observed in Greenland, but not in distant
Antartica.

• Wolff, et al. [7], concludes:

“In summary, the nitrate event identified as 1859 [by McCracken,
et al., [2]] is most likely the same event that more recent Green-
land ice cores identify at 1863. The parallel event in other cores,
as well as all other significant nitrate spikes in those cores, has
an unequivocal fingerprint of a biomass burning plume. . . . In
any case, the [McCracken, et al.] core is the only one of the 8
Antartic and 6 Greenland cores . . . that claims a spike in 1859.
Taking the data from all the cores discussed here, we can say
clearly that an episode of the size of the Carrington Event has
not left an observable imprint in nitrate in ice.”

13I am indebted to David Roodman for this reference.
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Figure 1: Subfigure 1(a)(i) redraws Figure 10(a) of Riley, representing the ex-
perimental approximation proportional to the probability density function. The
small circles represent the data bins. The left-most circle probably was not in-
cluded by the author in the calculations of the “best fit” lines, and he may
have omitted the right-most point for calculation of the “least squares” dashed
line. (See text and footnote 15 for more explanation.) The dashed line in Fig.
1(a)(i) is Riley’s claimed least squares (LS) line of best fit to the data. Subfigure
1(a)(ii) replaces the LS line with a dotted line whose slope is Riley’s presumed
MLE estimate of (−3.0) (see text). Subfigure (iii) superimposes (i) and (ii) for
comparison of the dashed and dotted lines.

I am not qualified to undertake a scientific evaluation of these assertions, but
personally, I find them convincing enough to reserve judgment of any conclusions
based on the McCracken, et al., data until the claims are evaluated by experts.
(Riley’s analysis of the ice core data is based solely on the data of McCracken,
et al.)

Although privately, I am skeptical of the ice core data, nevertheless a dis-
cussion of Riley’s analysis will well illustrate the main mystery which this paper
explores—that three of Riley’s four data sets, Figures (a) and (b) have almost
the same slope although these slopes should differ by 1 if the paper’s power law
assumption holds.. Since the McCracken data is so small, analysis by hand is
feasible.

Our Figure 1(a) redraws Riley’s Figure 10(a) histogram for the ice core data,
using coordinates for the data bins measured from a high-resolution .pdf file of
Riley’s paper.14 Subfigure 1(a)(i) includes Riley’s dashed line of best least
squares (LS) fit. The small circles represent the data bins. The left-most circle
probably was not included by the author in the calculations of the dashed LS

14 Obtainable at http://onlinelibrary.wiley.com/doi/10.1029/2011SW000734/abstract .

For comparison with Riley’s paper, Figure 1(a)(i) attempts to replicate Riley’s Figure 10(a)
rendering of the data rather than to plot the pdf from the original data. There are some
anomalies in Riley’s Figure 10(a), but they would not affect the discussion.
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line, and the right-most point may have been omitted as well.15

Riley’s paragraph [42] states:

“The MLE fit to the line in Fig. 10(b) gives a slope of −2.0.”

Does this mean for a pdf p(x) = Cx−α, that α = 2.0 or α− 1 = 2 (so α = 3.0)?
I now conjecture that it means that α = 3. This is because the syntax here,
though ambiguous, is somewhat less ambiguous than elsewhere. Also, assuming
α = 3 yields a final probability estimate of 2.4% (for the probability of an event
worse than Carrington in a decade), which is not too far from the paper’s claim
of 3.0%.

Whatever the case, Table 1 gives the measured “MLE slope” of Fig. 10(b)
(graph of the CCDF) as 2.0, which would imply α ≈ 3.0.

Figure 1(a)(ii) superimposes a dotted line of slope −3.0 over the data. The
constant term in the equation of that line was determined by minimizing the
least squares error between the data and all lines of slope −3.0.

Figure 1(a)(iii) superimposes that dotted line on Figure 1(a)(i) in order to
compare how well the two lines fit the data. The difference does not appear
enormous, but I would be surprised if anyone would claim that the dotted MLE
line fits the data better.

This seemingly small difference translates into a difference of about an order
of magnitude in the final probability estimates (of an event worse than Carring-
ton in a decade). Using the same assumptions as above, but changing α = 3.0
to α = 2.0 changes the previous probability estimate of 2.4% to 17.2%.

5.1 How these probability estimates were obtained

Many readers may want to skip this subsection, which explains the subsidiary
assumptions used to calculate the probability estimate of 2.4% for α = 2.0
vs 17.2% for α = 3.0. Its interest lies in clarifying how to guess the critical
parameter xmin which the paper fails to give for all the data sets.

The values substituted into the paper’s equation (6) to obtain these estimates
are are:

xmin = 2.47, N = 55, τ = 383, ∆t = 10, xcrit = 18.8 .

15 See the descriptions around Riley’s Figs. 10 and 2 for the author’s explanations. Our
Figs. 1(a) omit for clarity the vertical dashed lines in Riley’s Fig. 10(a) which are connected
with those explanations.

The paper does not say why why the rightmost point would be omitted from the least squares
calculations, if it was. My independent calculations from the original data yield slightly
different numbers than the the paper’s. The differences would not affect our discussion. It
is possible that I was using different assumptions because the paper’s assumptions are not
clearly stated. In particular, the lower limit xmin (as defined in my earlier analysis [3]) for
the power law pdf is not specified.

Since all this is probably as confusing to the reader as it was to me, I emphasize that all the
data used in constructing our Fig. 1 came directly from Riley’s paper. Because the coordinates
of the data points were not directly given there, they were measured from a high-resolution
.pdf file of the paper obtained from the Space Weather website.
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According to McCracken, et al. [2] which presented the original data used by
Riley and here, the time span τ of the data set is 383 years, not the 450 years
which Riley states in paragraph 40. The number of observations at least xmin is
only 55 out of the total of 70 observations reported by [2], despite the impression
given by the paper that all 70 observations at least 2.0(×109) were used.16 The
paper does not explicitly give the value of xmin, which appears only implicitly
in the expression “P (x ≥ xcrit)” of the paper’s equation (6). The above value
xmin = 2.47 was deduced from the captions of the paper’s Figure 10, which
refers back (“As Figure 2”) to the caption of Figure 2. The latter caption
states:

“The solid straight line in Figure 2b is a MLE fit to the data above
the lower threshold indicated by the left-most vertical dashed line.”

For mathematical correctness, this would imply that xmin would be the hor-
izontal scale value of the left-most vertical dashed line. That scale value was
measured as 2.47 for Fig. 10(b) on the high-resolution .pdf file.

Note added May 6, 2016: Unlike most of Riley’s figures, the left-most vertical
lines in Figures 10(a) and 10(b) do not have quite the same scale values: for
Figure 10(b) the scale value is measured as the 2.47 used above, while for 10(a)
it is 2.58. Previous versions of the present work mistakenly used xmin = 2.58
instead of xmin = 2.47, obtainng a final probability estimate of 2.7% instead of
the present 2.4%.

6 The Solar Flare data set–Part 2

The preliminary analysis of the Solar Flares section of Riley’s paper focused on
the inconsistency between the slopes of Figs. 2(a) and (b), which is the main
mystery affecting all of the data sets. The present section reports an unrelated
major anomaly. Although it does not affect the final probability estimates, it is
too severe to be ignored.

The solar flare measurements report the flux of “hard” (i.e., energetic) X-
rays. We can imagine observing a plate of some given size (say 2000 cm2)
and counting the number of hard X-ray photons passing through it in some
given period (say a second). Observe for a longer period (say a day). Then
plot the photon counts per second vs. the number of times in a day that this
count frequency is observed. For example, if there are 20 periods of 1 second

16The paper does say that all 70 observations were used for Fig. 10(b), but this is mathemat-
ically incorrect unless xmin = 2(×109), which contradicts apparent assumptions (particularly,
the captions for Figs. 10 and 2) stated elsewhere. For reference, were xmin = 2, the final prob-
abality estimate for α = 3 would be 1.6% instead of the 2.4% for the xmin = 2.47 which is
the main text’s best guess.

The difference for these particular estimates may seem small, but it does illustrate the dif-
ficulty in understanding Riley’s assumptions as presented in the paper. All of this stems
from the paper’s incorrect equation (1) which omits the critical parameter xmin, at which
the reader has to guess for all of the data sets. This is one more illustration why Riley’s
probability estimates should be carefully checked before citation.
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in the day for which the count frequency is in a “bin” of determined size, say
[104, 104 + 10], this would be represented on a histogram as a vertical bar over
the interval [104, 104 + 10] with height 20. (Riley’s histograms represent the
vertical bars with small circles.) To obtain Figure 2(a), plot the histogram in
log-log coordinates. The result is an experimental approximation proportional
to the probability density p(x) of observing count frequency x, plotted in log-log
coordinates. This explanation is a bit oversimplified, but it gives the physical
picture.

I chose the bin width as 10 for illustration, but this is far from what Riley
used. Were the bin width 10, there would something like 107 bins, a huge number
for a data set comprising only 7236 observations [paragraph 22]. According to
the caption for Figure 2(a),

“100 bins were equally spaced in peak rate between 102 and 108

counts̄ s [sic] per 2000 cm2”.

(I wonder if the 108 could be a typo which should be 106, but even if so, the
following remarks would apply.) That would imply that each bin was of the
enormous size (108 − 102)/100 ≈ 106. In particular, the horizontal interval
[102, 104) would lie entirely inside one bin. But there are a large number of data
points (small circles) above this interval, and each data point is supposed to
correspond to one bin.

This is a huge anomaly. Something is seriously wrong. My first thought was
that the 100 bins might have been equally spaced in “logarithmic” rather than
“linear” space, but paragraph [23] explictly rules out this possibility:

“These data were binned in intervals separated equally in linear, not
logarithmic space . . . .”

Could this anomaly have something to do with Riley’s incorrect claim (discussed
in Solar Flares–Part 1) concerning the slope of Figure 2(a)? Could logarithmic
bins have been used even though the paper specifically asserts the opposite?17

I do not know.

7 The Geomagnetic Storm data set

The most important thing to recognize concerning Riley’s analysis of the Geo-
magnetic Storm data set is that it is impossible to replicate. We have to take
the author’s word for the correctness of the analysis.18 We cannot check it for
ourselves. Given the very substantial and demonstrable errors elsewhere in the

17If logarithmic bins were used to construct Fig. (a), but Riley’s “counting to the right”
method used for Fig. (b), then one can show that assuming a sufficiently large sample from a
perfect power law, Figs. (a) and (b) would have the same slope. However, Fig. (a) would no
longer approximate the log-log graph of the pdf.

18This is not meant to imply that the author is untrustworthy. But anyone can make a
mistake. Remember that we are talking about probability estimates which if taken seriously,
have societal implications in the hundreds of billions of dollars. Mistakes which might seem
trivial in other contexts can have huge consequences in this one.
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paper (particularly in the Solar Flare section), it seems prudent to withhold
judgment on an analysis which cannot be independently checked.

The reason that the paper’s analysis is impossible to check is that it never
gives us the precise definition it uses to identify a “geomagnetic storm”. The
closest the paper comes is in paragraph [37]:

“To generate an event-based data set, we arbitrarily define a ‘signif-
icant’ magnetic storm to be one for which |Dst| exceeds 100 nT. In
principle, we could define an ‘event’ as the hourly value of Dst and
compute our probabilities based on that.

. . .

Thus, we would rather identify a contiguous range of data that all
exceeds some criteria as a single event, rather than a set of events.
In Figure 7, we show the occurrence of these significant storms as a
function of time. . . . ”

But it never specifies the “some criteria” which it uses to define “significant”
single event! A reference to the raw data is furnished in the caption to its
Figure 6, but there is no way to tell how the paper translates this raw data into
a sequence of “significant” magnetic storms.

That said, let us proceed to discuss the paper’s analysis under the assump-
tion that its graphs, etc., can be regarded as accurate (unlike those of its Solar
Flare section). Table 1 shows that this data set is different from the others in
that the slope of the observed pdf (Figures (a)) is not about the same as the
slope of the CCDF (Figures (b)).

Under the paper’s power law assumption, the absolute “slope” α of the pdf
should be precisely one more than the absolute “slope” α−1 of the CCDF. This
is not the case for the geomagnetic storms—the absolute slope of Figure 8(a) is
about 0.7 more than the absolute slope of 8(b)—, but it seemed conceivable that
the discrepancy (0.7 vs the expected 1.0) might be attributable to experimental
imperfections or random chance.

To test this possibility, I wrote a computer program which simulated the
paper’s geomagnetic storm data, assuming it was randomly drawn from a power
law distribution p(x) = Cx−α with α = 4.2. That is the value of α which seems
to be implied by the paper’s ambiguous paragraph [38] claim,

“In Figure 8a, we show a histogram of events as a function of the
severity of the storm. The data appear to follow a power law distri-
bution, as indicated by a least squares fit to the data.19 In Figure
8b the power law relationship of the CCDF is considerably better:
Only the last 3 points (which are made up of only 1, 2, and 3 events,
respectively, deviate. The slope of the MLE fit is −3.2. [emphasis
mine]”

19It is too scattered to look that way to me.
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This is a good example of the paper’s ambiguous syntax. Does “MLE fit” refer
to the −α of the pdf, or −(α− 1) of the CCDF?20

Both Figures 8(a) and 8(b) are mentioned in this quote, but Figure 8(b) is
mentioned last. Should we take this to mean that α − 1 is the slope of Figure
8(b), where α is given by the MLE estimate? My current best guess is that this
probably is the intended meaning, particularly since the measured slope −3.0 of
the MLE line in Figure 8(b) is not too far from the claimed “MLE fit” of −3.2
of the quote (though still outside the maximum estimated measurement error).

Before describing the computer results, let us examine some consequences
of the hypothesis that the MLE estimate for α is 3.2 + 1 = 4.2, along with
other reasonable hypotheses about the paper’s ambigous presentation. In this
analysis, please keep in mind that there is no way to independently reproduce
the paper’s assertions from the raw data, as noted above.

First let us calculate the probability of an event worse than Carrington in a
decade. For this calculation, we need the values of the parameters to substitute
in the paper’s equation (6):

P (x ≥ xcrit, t = ∆t) = 1− e−N ∆t
τ P (x≥xcrit). Riley’s (6)

Some of these are given explicitly in the paper:

N = 746, τ = 46, xcrit = 850, ∆t = 10 ,

but to compute

P (x ≥ xcrit) =
(
xmin
xcrit

)α−1

,

we need the value of xmin, which the paper never gives explicitly for any data
set.

From the caption of Figure 2 (figures for the other data sets refer back to
Figure 2 via the phrase “as Figure 2”), we can guess that xmin is the horizontal
scale value of the “left-most vertical dashed line” in Figure (b). This caption
states that

“The solid straight line in Figure 2b is a MLE fit to the data above
the lower threshold indicated by the left-most vertical dashed line.”

Then for mathematical correctness, xmin should be the scale coordinate of the
“left-most vertical dashed line”.

20Before learning how to accurately measure slopes on a high-resolution .pdf file under high
magnification, my best guess was α = 3.2. My current best guess is α− 1 = 3.2 because the
measured value of α − 1 = 3.0 ± .05 for the slope of Fig. 8(b) (see Table 1) is closer to 3.2
than is the measured value α = 3.7± .06 for the slope of Fig. 8(a).

The arithmetic of the previous “Analysis” [3] was based on the previous best guess of α = 3.2.
That best guess was based on an indication that similar ambiguous syntax in the CME section
of the paper should be interpreted in that way. A direct question of which was meant for the
CME data was ignored by the author, as have been all of my four messages asking about
various points in [1].
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There is also a left-most vertical dashed line in all Figures (a), but it is all
but invisible in Figure 8(a) (see below). For Figure 2, this left-most line has the
same scale value as that of the corresponding line in Figure 2(b), but Figure 8
is different. The scale value of the left-most vertical dashed lne in Figure 8(b)
is seen in a magnified high-resolution .pdf file to be about 121 (more exactly,
121.2±1.5). In the printed version, Figure 8(a) appears to have only one vertical
dashed line (unlike all the other figures), but under magnification of the .pdf
file, the left-most vertical line is seen to be coincident with the left vertical axis
at scale value 100. The dashes are a little wider than the vertical axis under
800% magnification.

Thus we have two candidates for xmin, 121 and 100. If we take the captions
for Figs. 8 and 2 absolutely literally, we would have xmin = 121, but we shall
do the calculation separately for each value.

Taking xmin = 121, the final probability estimate (of an event worse than
Carrington in a decade as determined from Riley’s (6) ) is 27.4%, which seems
too high to be believable.21 The paper claims 12%. Taking xmin = 100, yields
a final probability estimate of 16%, which differs significantly from the paper’s
claimed 12%, but at least is in the same ballpark.

The larger α, the smaller the final probability estimate. Recall that the
measured slope of the MLE line in Fig. 8(b) is −3.0, which would imply α =
4.0. Taking into account the possible measurement error (estimated as ±.06),
suppose we increase this to α = 4.1, again using the smaller value of xmin = 100
(which will produce a smaller probability estimate). Then the final probability
would be 19%, which still seems suspiciously high.

I haven’t found reasonable hypotheses which yield the paper’s claim of 12%.
It appears that either my arithmetic or the paper’s must be wrong. If any reader
has an explanation, I surely would like to hear it. Our smallest estimate of 16%
above is in the same ballpark as the paper’s 12%, but differs too much to be
attributable to any likely causes, such as measurement error.

This, along with the serious, demonstrable errors elsewhere in the paper
and the impossibility of checking Riley’s claims from the raw data (because
we lack his definition of “significant” magnetic storm) should be taken into
account by anyone tempted to cite the paper without caveats. I think it would
be irresponsible to cite the paper’s final probability estimates without caveats
unless the citor has independently verified and is willing to defend them.

7.1 Computer experiments

The computer experiments to be described were a product of a measurement
oversight. (Yes, I make mistakes, too! But I do try to correct them when
discovered.) In all of the paper’s Figures except Figure 8, the vertical scale
consists of an integral number of powers of ten (e.g., runs from 100 to 103 for
Fig. 4). However, Fig. 8(b) runs from about .003 ≈ 10−2.5 to 1.00 = 100 (instead

21Were that the case, the probability of going more than 15 decades (from 1859 to 2015)
without an event as bad would be less than (1− .274)15 < .008.
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of the expected 3 orders of magnitude from .001 = 10−3 to 1.00 = 100). Not
noticing this and thinking that the vertical scale was three orders of magnitude,
I obtained a slope of Fig. 8(b) close to that of Fig. 8(a), just like the other
three figures in which the slopes of Figs. (a) were about the same as those of
the respective Fig. (b).

It seemed remarkable that all the Figs. (a) had about the same slopes as
the corresponding Fig. (b) when they should differ by 1, given that they were
constructed independently from data sets describing completely different phys-
ical phenomena. (Indeed, the ice core data set probably has nothing to do with
anything involving the sun!)

I wondered if some property of power law distributions might make least
squares (LS) estimates of slopes of Figs. (a) systematically one less than MLE
estimates of the same slope. Indeed, such a phenomenon was reported by Gold-
stein, et al. [6] (their Table 1), although under significantly different protocols
than used by Riley. Specifically, they constructed the LS estimates from all ob-
servations drawn from a pure power law, instead of restricting to observations in
a limited range (between the dashed vertical lines of Riley’s Figs. (a)) as Riley
does. There are reasons to expect that using all observations might decrease
the LS estimates of the observed slope compared to restricting to a range of
observations for which nearly all observation “bins” were nonempty.

So, I wrote a computer program to simulate Riley’s “experiment” of drawing
746 observations from a pure power law distribution p(x) = Cx−α, with α = 4.2
corresponding to my current best guess at Riley’s claim. The object was to see
if the LS estimates for α were systematically less than the MLE estimates.

This computer experiment analyzes Fig. 8(a), so it used the parameters
of that figure. Specifically, the LS estimate was calculated by using only ob-
servations between the left-most vertical dashed line (visible only under high
magnification at scale value 100 as described above) and right-most vertical
dashed line (at scale value 200). For consistency, xmin must then be taken as
100.

The caption of Figure 8 states:

“In Figure 8(a), 100 bins were equally spaced in Dst between |Dst| =
100 and |Dst| = 102.7[' 501.2].”

This implies that there were

100× 200− 100
102.7 − 100

' 25

bins beween 100 and 200, the range which is used to calculate the least squares
estimate LS for α ( the negative of the slope of Fig. 8(a)). For some samples,
some of these bins will be empty and therefore not shown on Fig. 8(a). (Because
that figure is in log-log coordinates, an empty bin would be represented by a
small circle at vertical coordinate −∞.) Thus there should be no more than
25 circles on Fig. 8(a) between horizontal coordinates 100 and 200. However,
a direct count from the .pdf file at high resolution shows 32 filled bins (i.e., 32
bins with nonempty contents). This anomaly is unexplained.
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It seemed artificial to use the 25 bins between 100 and 200 claimed by the
caption of Fig. 8(a) when the data from which the LS estimate for α was calcu-
lated used at least 32 bins. So, the program divided the interval [100, 200] into
32 bins of equal width.

The program drew 200 samples of 746 observations each from this pure power
law and computed both LS and MLE estimates for α.22 The difference between
the measured slopes of Riley’s Figures. 8(a) and 8(b) is 0.7, with 1.0 expected
for a pure power law. This corresponds to the difference MLE−LS for Fig. 8(a)
being larger than 0.3.23 The program calculated the MLE and LS estimates for
each of the 200 samples of size 746, and flagged those with MLE− LS > 0.3.

Of the 200 samples only 6 had MLE − LS > 0.3. This corresponds to a
probability of about 3% that a sample of 746 drawn from Riley’s (apparently)
assumed power law will result in the MLE estimate being as much as 0.3 higher
than the LS estimate.

The use of the one-tail test seems reasonable because for all of the data
sets’ Fig. (a), MLE > LS, and for all but the geomagnetic storm data, MLE
is substantially higher (about 1 higher) than LS. The question is: why do we
always observe MLE > LS when they should be nearly equal? Could this be
attributed to some statistical feature of power laws?

I had expected that MLE − LS > 0 would be the norm, partly because
that was emphatically the case for the data sets (of which three of four had
MLE−LS ≥ 1 and partly because [6] reported MLE−LS ' 0.9 (though using a
substantially different protocol). But the results showed that MLE−LS < −0.3
was actually much more common than MLE − LS > 0.3. Of the 200 samples,
21 had MLE− LS < −0.3, with only 6 showing MLE− LS > 0.3.

In conclusion, if Riley’s geomagnetic storm data were in fact drawn from the
pure power law p(x) = Cx−4.2 that he seems to assume, his particular sample
was rather anomalous. More specifically, we can reject at the 97% confidence
level level using a one-tail test that Riley’s geomagnetic storm data was drawn
from the power law distribution which he seems to assume. For a two-tailed
test, we can only reject at the confidence level of 86%, which is not terribly
high, but still indicates that that Riley’s sample looks anomalous.

This is one reason to doubt that Riley’s sample came from the assumed
power law p(x) = Cx−4.2. If it did come from that power law it was a fairly
anomalous sample. Of course, if a sample is known to be anomalous, one should

22The MLE estimates, of course, used all observations, not just those below horizontal scale
value 200. It would be mathematically incorrect to restrict to scale values no more than 200.
Also, the coincidence between the number of samples of size 746, which was 200, and the scale
value 200 is no more than a coincidence. The program took 20 samples in each run, and there
were 10 runs. After the data were collected and the coincidence noticed, it seemed artificial
to restrict, say, to just 5 runs in order to remove the coincidence.

23This is a bit confusing because Riley’s paragraph [38] claim of “MLE fit” of −3.2 for
(presumably) Fig. 8(b) is inconsistent with the measured slope of −3.0 for the solid MLE
line of Fig. 8(b). If Riley had claimed the measured −3.0, that would correspond to α = 4.0.
but the LS line of Fig. 8(a) has absolute slope of only 3.7 (see Table 1). So for Fig. 8(a),
MLE − LS = 4.0 − 3.7 = 0.3. But α = 4.2 was used in the power law because that seems to
be Riley’s claim.
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hesitate to draw statistical conclusions from it, such as a conclusion about the
probability of an event worse than Carrington in a decade.

8 The Coronal Mass Ejection data set

The Coronal Mass Ejection data set was extensively discussed in the previous
“Analysis” [3], and will not be repeated in detail here. The only change I would
make is that my current best guess as to the meaning of ambiguous language
concerning “MLE fit” is that it refers to the slope of the CCDF, rather than the
slope of the pdf as I had previously assumed.24 I had interpreted the paper’s
highly ambiguous language in paragraph [31] as meaning that in the assumed
pdf p(x) = Cx−α, α = 3.2. In the light of subsequent development’s my best
guess is that the paper meant α = 4.2. That changes the final probability
estimates.

Any analysis of [3] depending on α = 3.2 should be reevaluated in this
light. This includes the analysis suggesting that the paper’s initial probability
estimate of 85% (for the probability of an event worse than Carrington in the
next decate) may have been obtained by using an incorrect xmin = 100 instead
of the correct xmin = 700. I was unable to repeat the analysis using Riley’s
so-called “quadratic speeds”, but I was able to repeat the calculation using
“linear speeds” instead,25 which should yield a comparable result. The result
I obtained which is reported in [3] using α = 3.2 was probability 99.99%. The
same calculation using α = 4.2 gives probability 88%, which is comparable to
Riley’s 85%.

The paper recognizes its 85% estimate as “not credible” [paragraph 31]. Let
us think of the implications of this.

Both Figures 4(a) and 4(b) look like straight lines between speeds 700 and
2000 km/s. This is the essentially the only justification that the paper gives for
the power law assumption. But if that assumption leads to a result which is
‘recognized as “not credible”, then it must be wrong. Yet the paper soldiers on
under the same assumption to eventually obtain its famous 12% final estimate
for the probability of an event worse than Carrington in the next decade.

The paper explains this as follows. Figure 4(b) looks like a straight line
from 700 to 2000 km/s, but above 2000 it deviates noticeably, starting with
what paper calls a “knee” at 2000:

24Before posting the previous “Analysis” [3], I wrote the author asking about the meaning.
He chose to ignore that along with three other messages. If my previous best guess turned out
to be wrong (which is still uncertain), it was not for lack of inquiry. I would advise anyone
tempted to cite Riley’s final probability estimates without caveats to inquire of the author as
to his meaning, and if he replies, then to repeat the arithmetic.

25“Quadratic speeds” are obtained by fitting a quadratic polynomial to the height vs. time
measurements of CME’s and using the slope of the quadratic at the highest measurements.
“Linear speeds” are similarly obtained, but using a linear polynomial instead of quadratic.

The reason that I could not use quadratic speeds is that the database could be searched
automatically by linear speeds, but not by quadratic speeds. To sort the data by quadratic
speeds, I would have had to sort thousands of observations by hand.
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“We suggest that the reason for this artificially high probability is
that above 2000 km s−1 there appears to be a well-defined “knee”
in the distribution. Therefore, to address this, in Figure 5, we have
replotted the CCDF for the highest speeds and computed the MLE
fit to only the distribution above 2000 km s−1.”

When the paper acknowledges that “above 2000 [the CCDF] deviates notice-
ably”, it effectively acknowledges that a power law assumption based only on
the appearance of the pdf or CCDF as approximately a straight line is not in
accord with observation. Yet it goes on to apply the power law assumption
(with a revised slope) as if it were valid! Moreover, it does not tell us that the
data justifying the revised assumption (i.e., speeds above 2000) consists of only
a few tens of observations.

This alone should be enough to disqualify the final 12% estimate as anything
other than the result of an academic inquiry. It is hard to believe that it could be
taken seriously as a basis for determining, say, reasonable spending to prepare
for an event that could cost trillions of dollars. Twelve percent of a trillion
is $120 billion, which could be justified were the 12% estimate soundly based.
Yet it apparently has been so taken, judging by comments in the popular press.
Even NASA has posted an article on its website which takes seriously Riley’s
12%.26

Many of the questionable aspects of Riley’s analyses would be unlikely to be
noted by casual readers. Some are too technical, and some require unusually
careful reading. But this one should stand out to any qualified reader.

9 Summary and conclusions

Riley considers four data sets, Solar Flares, Coronal Mass Ejections, Geomag-
netic Storms, and Nitrates in Ice Core Samples. Only the last three of these
yield estimates for the probability of an event worse than Carrington in the next
decade.

The raw data for the ice core samples has been questioned in Wolff, et al. [7],
(of which Riley may have been unaware because it was published after Riley’s
paper [1]). Wolff, et al., argue that the ice core samples from which Riley’s data
was taken were probably misdated and their nitrate deposits were probably
caused by forest fires rather than emissions from the sun.

The paper’s analysis of the solar flare data appears to be seriously in error.
This data was not used to produce a final probability estimate, but the errors
are so serious that they make one wonder about the handling of the other data.

The paper’s analysis of the Coronal Mass Ejection data does not support
the conclusion of its famous estimate of 12% probability for an event worse
than Carrington in the next decade. An initial estimate based on over 1000

26http://science.nasa.gov/science-news/science-at-nasa/2014/23jul superstorm/ The arti-
cle actually cites the same 12% estimate derived from the Geomagnetic Storm data, but
there are serious problems with that one as well.
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observations of equal reliability (or unreliability) yielded an estimate of 85%,
which the paper itself characterizes as “not credible” Then the paper applies
identical methods to a restricted data set of only a few tens of observations
to obtain the 12% estimate. If the underlying power law assumption can be
trusted, then the original analysis should not have produced the unbelievable
85% estimate.

The paper’s analysis of the Geomagnetic Storm data is described so vaguely
that it would be impossible to replicate. Serious errors elsewhere in the paper’s
data analyses (e.g., for Solar Flares) suggest that any analyses which cannot
be replicated should be regarded as provisional. Moreover, using only results
reported by the paper itself together with the paper’s methods, my final fi-
nal probabiity estimates differ substantially from those reported in the paper.
Either my arithmetic is wrong, or the paper’s is.

The above points out anomalies in the individual data sets. However, there
is one major anomaly which unites all of them—the “slopes” of the reported
pdf’s (Figures (a)) (i.e., the slopes of their log-log graphs) are inconsistent with
the slopes of the CCDF’s (Figures (b)), assuming the power laws on which the
paper’s analysis is based. For three of the four data sets, the slopes of the pdf’s
are about the same as the slopes of the CCDF’s, when according to the power
law, they should differ by 1.

For the remaining data set, Geomagnetic Storms, the difference is not nearly
zero, but also is not as close to 1 as it should be.. Computer experiments
suggest that a power law hypothesis for this data set can be rejected at the 97%
confidence level. That is, there is only about a 3% probability that the reported
results would be obtained from the paper’s assumed power law.

This suggests that either the power law assumption is wrong, or the data
set was drawn from the assumed power law distribution, but happened to be
anomalous. An analogy is that if a fair coin is tossed 5 times it could come up
all heads even thouugh the probability of this is only aboout 3%. But if the
data set is recognized as anomalous, it is questionable to base conclusions on it.

The main conclusion that I draw from all of this is that Riley’s paper, though
an interesting academic exercise, should not be cited without caveats as pro-
ducing realistic probability estimates. Its methods are questionable, and their
implementations are often flawed. The paper should be cited without caveats
only by those who have independently checked its assertions and are willing to
defend them.

10 The broader picture

I am sometimes asked how I would estimate the probability of an event as bad
as Carrington in the next decade. My reply is that I don’t know any way to do
so in which I would put any confidence.

I doubt that we have enough information. Essentially, all we know is that
there has been no event like that for about 15 decades (from 1859 to 2015). If
there were some reliable way to assign a probability distribution to the strength
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of events on the sun (e.g., Coronal Mass Ejections) or their manifestations on
the Earth (e.g., geomagnetic storms as measured in Dst), Riley’s method could
be used (whether or not that distribution were a power law), but I’ve seen no in-
dication that we are close to identifying such a distribution. In particular, there
seems to be more negative evidence than positive for a power law distribution.

The fancier the mathematics leading to such an estimate, the less I would
trust the estimate. Nontrivial mathematics generally requires nontrivial as-
sumptions which are difficult to verify in a real world setting. (In particular,
this is true of extreme value analysis.) So, let’s see how far we can get with
transparent mathematics using plausible assumptions.

We shall use a decade as a time unit. Let q denote the probability of an event
as bad as Carrington in a given decade. This formulation already contains an
implicit assumption that q does not depend on the decade—technically known
as an assumption of “stationarity” (of a certain stochastic process which we’re
not going to define).

We shall also assume that the future is “independent” of the past. In partic-
ular, if a magnetic storm of some strength (not necessarily as bad as Carrington)
happens to have occurred yesterday, that does not affect in any way the prob-
ability of anything tomorrow. Put another way, the probability of some event
tomorrow is the same whether or not we know that a magnetic storm occurred
yesterday.

Under these assumptions, the probability that 15 decades pass with no event
as bad as Carrington is (1 − q)15. (I assume that the reader knows enough
elementary probability to figure out why.) If someone claims, say, that q = 0.12
(i.e., 12%), then we can calculate that probability as (1−0.12)15 ' 0.15. If that
probability is very low, then it is very unlikely that the observed 15 decades
without a Carrington would have occurred, so perhaps the claimed q was too
high. In technical terms, we can reject the hypothesis that q ≥ 0.12 at the 85%
confidence level. (1 − 0.15 = 0.85.) If the claimed q were 0.18 (i.e., 18%), so
that (1 − q)15 ' .05, then we could reject the hypothesis that q ≥ 0.18 at the
95% confidence level, etc.

A commonly used confidence level required to reject a hypothesis is 95%,
but this is an arbitrary choice, and many feel that a more stringent level such
as 99% or even 99.9 % should be used for important matters. But even if we
can’t reject a hypothesis like q ≥ 0.12 at our chosen level, that doesn’t mean
that we should accept the hypothesis.27 It just means that the hypothesis is not
terribly unlikely, though it might not be particularly likely either.

In such a case, we would be less likely to draw a conclusion either way. In
particular, Riley’s famous 12% estimate seems fairly unlikely, but not terribly
unlikely.

But more can be said. If we are assuming that Carrington-class events occur
at random times, then we would not estimate the expected time between events
as 15 decades but at least twice that, 30 decades. That is because our only
information is that none has been seen for 15 decades, so why would we not

27Many elementary statistics texts give the opposite impression.
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expect at least another 15 decades without one (on average)?
If we take this point of view, then our calculation (1−q)15 should be replaced

by (1−q)30 to determine the hypothesis rejection at the chosen confidence level.
And even that tilts the scale against rejection, since we guess (estimate) the
average time between Carringtons as at least 30 decades, instead of exactly 30
decades. So our rejection criterion is actually somewhat conservative, in that
we might fail to reject some hypotheses which actually should be rejected.

Applied to Riley’s 12% estimate, we get (1 − q)30 = 0.8830 ' .02, so we
can reject that q ≥ 0.12 at the 98% confidence level. Even disregarding what I
view as questionable methods leading to the 12% estimate, I would distrust it
on the general grounds just explained. There is no way to prove that it can’t
be correct, but it does seem suspect.

We have been using Riley’s 12% estimate for illustration, but even under the
most optimistic expectations, the uncertainties in arriving at such estimates are
so large that it would be unrealistic to hope for accuracy much better than an
order of magnitude. So let’s repeat the calculation for a q which is an order of
magnitude lower, say q := .01 (i.e., 1%). Then (1− q)30 = 0.9930 = .74, which
is such a large probability that we couldn’t think of rejecting the hypothesis
q ≥ 0.01 at any reasonable confidence level.

The bottom line is that it seems fairly unlikely that q could be as high as
0.1 (10%) because (1− 0.1)30 ' .04. But if q were .01, the observed 15 decades
without a Carrington (followed by a similar presumed 15 decades without one,
on average) would be very probable, so we certainly can’t reject q ≥ .01. That
doesn’t mean that we have to accept or estimate that q ≥ .01. It could well be
much lower, but erring on the side of caution seems prudent to me, given the
potentially catastrophic consequences of a Carrington class event.

Such an event could disrupt life as we know it for a year or more and could
cost in the trillions of dollars. A percent of a trillion is 10 billion, so we would
more or less break even if we could substantially reduce the threat by spending
on the order of tens of billions. That amounts to some tens of dollars per
inhabitant of the U. S. . That sounds to me like a reasonable amount for
insurance, assuming that good protection could be obtained for that amount.

11 Appendix 1: The Maximum Likelihood Es-
timate (MLE)

11.1 Synopsis

The Maximum Likelihood Estimate (MLE) plays a large role in Riley’s analysis.
Any misunderstanding of it may engender a misunderstanding of the paper.
This appendix reviews this concept for those not familiar with it. The points
made will be the following:

• Given a family of probability density functions (pdf) depending on a pa-
rameter α, such as an exponential distribution pα(x) = αe−αx, and a
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sample from some distribution whose pdf is known to be in the family
(but for an unknown α), the MLE gives an estimate of α.

When one refers to an MLE in standard statistical terminology, one refers
to the estimate of the parameter for a family of pdf’s. There is no usual
concept of an “MLE” for a family of complementary cumulative distribu-
tion functions (CCDF). Given the pdf’s depending on α and the sample,
there is a way (usually yielding a formula) to determine the MLE of α, but
there is usually no straightforward way to estimate α given only a fam-
ily of CCDF’s. Riley appears to use nonstandard terminology in talking
about the “MLE fit” [paragraph 38] and the like for a family of CCDF’s
depending on a parameter.

Riley’s apparent terminology could be justified for the special case of power
law CCDF’s if explicitly introduced, but it never is. This makes the syntax
ambiguous and has the potential to cause great confusion.

• Riley’s formula (4) for the MLE applies only to power law pdf’s. The
paper does not say otherwise, but a reader who did not keep this in mind.
might be tempted to draw inappropriate conclusions.

If the formula were applied to a family of pdf’s other than power laws,
one would not expect sensible results. This is important in the context of
the present analysis, which presents evidence that Riley’s data may not
have come from power laws. The MLE’s calculated from Riley’s (4) do not
always appear to well fit the observed pdf’s, and this may be the reason.

11.2 Review of the Maximum Likelihood Estimate (MLE)

Suppose we have a family of probability distributions indexed by a real param-
eter α. We take a random sample from the distribution and try to use it to
estimate the parameter.

For a simple example, suppose we observe an asymetrical coin tossed five
times, with a result of three “heads”, and we are asked to estimate the prob-
ability α that another toss will give a “head”. In the absence of additional
information, a natural guess is that α might be the value which maximizes the
probability of obtaining the observed result. The latter probability is propor-
tional to α3(1− α)2, which is maximum when α = 3/5.

The 3/5 is called the Maximum Likelihood Estimate (MLE) for α. For
a discrete probability space, it is defined as the value of the parameter for
which the observed sample is most probable. For a real number x drawn from
some interval of real numbers with probability density function pα = pα(x), the
probability of any finite sample x1, x2, . . . , xn of n numbers drawn independently
is zero, so we replace that probability with the “likelihood” L(x1, x2, . . . , xn;α)
of the sample, defined by:

L(x1, x2, . . . , xn;α) := pα(x1)pα(x2) . . . pα(xn). (1)
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For a given sample x1, . . . , xn, the value of α = αMLE which maximizes L(x1, . . . , xn;α)
is called the maximum likelihood estimate (MLE) for α.

For a power law distribution

p(x) =

 Cαx
−α x ≥ xmin

0 otherwise
(2)

where Cα = (α− 1)xα−1
min is a constant depending on α, the likelihood function

is
L(x1, . . . , xn;α) = Cnα(x1x2 . . . xn)−α .

Maximizing this with respect to α for a given sample x1, . . . , xn gives the Max-
imum Likelihood Estimate αMLE :

αMLE = 1 +

[
n∑
i=1

loge(xi/xmin)

]−1

,

which is Riley’s equation (4) slightly rewritten.
All of this is of course elementary, and I summarize it only to make the

point that Riley’s (4) is not the fundamental definition of “maximum likelihood
estimate”, but applies only to the special case of a power law distribution. If it
is applied to data drawn from a parametrized distribution which is not a power
law, then one would not expect the result to have anything to do with the MLE
for that distribution. For example, consider a normal distribution with mean α
and variance 1, whose pdf p(x) is

p(x) :=
1√
2π
e−(x−α)2/2 .

For this distribution, maximizing the likelihood gives the very different formula

αMLE =
1
n

n∑
i=1

xi .

Here if the sample values xi tend to be large, then the MLE estimate for α also
tends to be large, whereas for Riley’s (4) for a power law, it is just the opposite.

My suspicion is that the data did not come from a power law. If it did
come from a power law, we would expect the slope of Riley’s Figures (b) to
be one less than the slope of the corresponding Figures (a), but in fact they
are nearly equal for three of the four data sets. We cannot rule out that this
could happen for an atypical sample, just as we cannot rule out that a fair coin
tossed 100 times could produce 100 heads. However, it seems implausible that
this should happen “by accident” for three of four data samples which were not
only independently taken by others, but involved different physical phenomena
(X-rays from solar flares, coronal mass ejections, magnetic storms, and ice core
samples). And if it did happen, any conclusions based on the samples should
be suspect, precisely because the samples were known to be atypical.
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Next we use the example of the variance-1 normal distribution to make
another point. The complementary cumulative distribution function (CCDF)
F for this normal distribution is

F (x) :=
∫ ∞
x

1√
2π
e−(u−α)2/2 du

It is known that there is no formula for F in terms of “elementary” functions.
Like the pdf from which it was derived, it contains a parameter α. What should
one make of a statement like:

The MLE fit to F is −3.2 ?

Riley contains several statements with similar syntax (e.g., pararaphs [38] and
[42]). The above is not a direct quote but is representative; the actual quotes
are embedded in other syntax, which makes it awkward to give a concise actual
quote.

The only sensible interpretation I can think of is that the MLE estimate for
α, derived from the pdf p(x) := e−x

2/2/
√

2π and sample x1, . . . , xn, is αMLE =
−3.2. There is no recognized concept of “MLE estimate” or “MLE fit” to a
CCDF F . There is no obvious way to obtain an estimate for α directly from
F other than to to estimate p from F and then obtain the MLE estimate from
maximizing the likelihood (1). However, it now looks as if Riley may have used
a different meaning.28

The situation becomes potentially ambiguous when applied to a power law
distribution (2) with exponent α. The CCDF F for this distribution just hap-
pens to follow a power law

F (x) :=
∫ ∞
x

Cαu
−α du =

(
x

xmin

)α−1

,

with exponent α−1 one less than the exponent α of the pdf p(x) = Cαx
−α. Here

it may be ambiguous whether an “MLE estimate for F” refers to an estimate
for α or α− 1. The MLE method estimates α, but of course that also estimates
α − 1. Riley uses vague syntax which is often ambiguous as to whether α or
α− 1 is meant.

12 Appendix 2: Measuring the .pdf file

Each data set contains references to “MLE fits” undefined “slopes” and the like.
Most of these references are phrased in such a vague way that it’s not clear if
the author is referring to the “slope” α of the pdf p(x) = Cx−α or the “slope”
α− 1 of the corresponding CCDF. Early in my study of this paper, I wrote the
author asking which he meant, but this message was ignored, as were all of my
four messages asking about various points in the paper.

28A direct query to the author as to the meaning went unanswered, as have all my questions
about various points in the paper.
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To settle the question of whether the various references to “slopes” referred
to the pdf or CCDF, I tried to actually measure with a ruler the slopes of the
figures (a) (pdf) and (b) (CCDF), but the lines are thick enough that I couldn’t
get sufficient resolution to be sure.

Then David Roodman showed me how to use a high-resolution .pdf copy
of the paper (obtainable from the Space Weather website) to measure with
Adobe Acrobat. Using Adobe’s magnification, it is easy to measure slope to an
accuracy of 0.1 or better.

However, it required some experimentation to learn how. This appendix
describes how the measurements were made. It may be useful for those who
want to make their own measurements, and for those who want to convince
themselves that my measurements were made correctly. No doubt explanations
of the measurement facilities of Adobe Acrobat exist somewhere on the Adobe
website, but I have not seen them, and they are not self-evident.

The measurement procedure is slightly tricky because of the use of log-
log coordinates and different scales on the horizontal and vertical axes. The
following instructions apply to Adobe Acrobat as implemented in Windows XP.
I assume they would be similar for other common operating systems.

Get a high-resolution copy of Riley’s paper from the Wiley website given in
footnote 14. (So far as I know, any copy from that website is high resolution.)
Following are some hints on measuring it.

1. Choose a magnification from the menu on the tool bar just above the text.
For most purposes, 400% magnification is adequate, but to measure slopes
above 5 accurately (which only occur in Riley’s Figure 5), you may need
to go above 1000%.

2. Enable the measurement tools from the edit menu by Edit > Analysis >
Measuring tool. At high magnifications, the lines will appear too thick
to measure accurately. They can be made thinner by unchecking “Line
Weights” in View > Show/Hide > Rulers and Grids > Line Weights.

3. To make many numerical measurements, you need a scale, called a ruler.
The scales are enabled by right-clicking, which brings up a menu (distinct
from the usual Edit, View, etc. menus). Then click on “Show Rulers”.
That will present rulers on the top and left side of the page.

4. The default ruler is calibrated in inches with the usual 1/4, 1/8, . . . inches.
If you prefer different units, right click on the ruler itself to obtain them.
I use millimeters (mm).

Adobe furnishes various measuring tools but the most straightforward and ac-
curate procedure is to take measurements directly from the rulers. When you
position the cursor on the page, the corresponding horizontal and vertical co-
ordinates are displayed on the top and side rulers. The scale on the side ruler
(y-axis) is unusual in that it increases in the downward direction rather than
upward as is customary. For our purposes, this isn’t an inconvenience because
all slopes in Riley are negative and involve only coordinate differences.
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Riley’s Figures 2(a) and (b) represent the data in log-log coordinates. This
means that a given difference in physical distance on the horizontal axis rep-
resents increasing the data by a constant factor. An increase by a factor of
10 corresponds to an increase in physical distance by a certain amount. It is
natural to choose that amount as a “unit distance”. If so, physical distance
on the horizontal axis is measured in what we call “horizontal distance units”,
abbreviated hdu. Starting at a point and going to the right one hdu corresponds
to increasing the number on the horizontal scale by a factor of 10.

Similar remarks apply to “vertical distance units” (abbreviated vdu) on the
vertical scale. However, the physical distance (in mm, say) corresponding to 1
hdu is not usually the same as the distance corresponding to 1 vdu. Therefore
what appears to be the slope of a line in Riley’s figures, which I call the “ap-
parent slope”, is usually not the same as the “actual slope” which would be the
“apparent slope” if an hdu were the same number of millimeters as a vdu. The
apparent slope is what is measured by Adobe’s rulers and also what is perceived
by the human eye as “steepness”. A conversion factor must be applied to obtain
the actual slope.

To illustrate, let us measure the slope of the dashed LS line in Riley’s Figure
2(a). First we obtain the ruler coordinates (in mm) of two points on the line,
such as (40.0, 50.5) and (48.0, 71.0). For best accuracy, these points should be
chosen as far apart as convenient. The apparent slope is then

apparent slope = −71.0− 50.5
48.0− 40.0

= −2.43 .

The minus in front of the fraction is to compensate for the fact that the vertical
ruler increases in the downward direction, rather than upward as is conventional.
We give numerical results to three significant figures to reduce round-off errors.
At 400% magnification, the rulers can be read to about ±0.1 mm, which we
shall see results in a maximum error in apparent slope of 0.13 and a maximum
error in actual slope of about ±0.05. Errors in actual slope of up to about 0.2
have no practical significance.

To convert to actual slope, we use the log-log scale printed in the article to
convert from hdu or vdu to mm. We find that

6 hdu = 26.5 mm
3 vdu = 38.5 mm ,

from which it follows that

1(horizontal) mm = 6/26.5 = 0.264 hdu
1(vertical) mm = 3/38.5 = 0.0792 vdu .

Plugging this into the formula for apparent slope (converting the numerator of
the fraction from mm to vdu and the denominator to hdu), gives

actual slope = apparent slope× 3/38.5
6/26.5
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actual slope = apparent slope× 0.344
= −0.84 .

We shall later need a name for the conversion factor (here (3/38.5)/(6/26.5) =
0.344) from apparent to actual slope . Call this γ, so

actual slope = apparent slope× γ (3)

A similar measurment of Figure 2(b) yields an actual slope of −0.85 for the
dashed LS line and −0.84 for the solid MLE line. Thus the slopes of Figures
2(a) and 2(b) are effectively identical.

12.0.1 Error estimates

The maximum error in the slope estimate can be bounded as follows. First we
need a crude guess at an upper bound B for the absolute (actual) slope to be
measured. For Figure 2(a), we can take this as slope 2.0, which is above Riley’s
claim of 1.8 (but see below for my general method of determining B). Then an
upper bound for the apparent slope is B/γ.

For simplicity of exposition, we assume that a positive slope m is being
measured to avoid having to add confusing qualifiers concerning signs. We use
the usual formula

m =
y2 − y1

x2 − x1

where (x1, y1) and (x2, y2) are points on the line For simplicity we assume that
x2 > x1 and y2 > y1, and that the y-coordinate increases in the upward direction
as is usual.

Suppose that any distance measurement is subject to a maximum error of
±δ with δ > 0. At 400% magnification, δ is about 0.1 mm. Let

Y := y2 − y1 and X := x2 − x1.

Then both X and Y are subject to maximum errors of ±2δ. To keep everything
positive for simplicity, we assume that both X and Y are at least 2δ.

The maximum possible error ∆m in the measured (apparent) slope will occur
when the numerator is as large as possible and the denominator is as small as
possible:

∆m =
Y + 2δ
X − 2δ

− Y

X

=
2δ(X + Y )
X(X − 2δ)

=
2δ(1 + Y/X)

(X − 2δ)

≤ 2δ(1 +B/γ)
(X − 2δ)

,
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where γ is the conversion factor from apparent slope to actual slope defined in
equation (3).

For the Fig. 2(a) measurement above, with B := 2, δ = 0.1, γ = 0.344, and
X = 8.0 we have the maximum error

∆m ≤ 0.17 .

This is the maximum error in apparent slope. The maximum error ∆mactual in
actual slope is

∆mactual = γ∆m ≤ .06

The upper bound B := 2 for the actual absolute slope was used above for
expository convenience, but the error estimates quoted in Table 1 used an even
more conservative B. The apparent slope was measured and converted to an
actual slope. The bound B was then taken as the least integer at least 0.5 higher
than the actual absolute slope. For example, if the actual slope was −2.4, B
was taken to be 3.0, and for actual slope −2.6, B := 4.0.

The goal was to make all maximum errors no more than ±0.1. Typical errors
are probably much less.

12.0.2 A shortcut to slope measurement

The above measurement method is straightforward but a bit tedious. Before
leaving the subject of measurement, we mention a shortcut which readers may
want to employ. One of the measurement tools furnished by Adobe can measure
the “angle” θ of a line directly. The (apparent) slope is then ± tan θ.

I can’t describe it further because the way it works is hard to describe in
words. The easiest way to learn it is to ask someone to show you. It seems
a bit strange at first, but is fairly straightforward once you get the hang of it.
It produces acceptable slope estimates very easily, but is not quite as accurate
as the direct measurement described above. All the “measured slopes” in this
document were produced by direct measurement.

Acknowledgement: I thank David Roodman for introducing me to mea-
surement of .pdf files, for drawing my attention to [7], and especially for sharing
his independent analyses of Riley’s data.
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