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1 Addition December 6, 2012

The most important of the following comments points out what I suspected
might be an essential error in the proof of Theorem 2 of the commented paper
of the title. A draft had been sent to the authors. After no substantive replies
had been received, I posted it on my website, www.math.umb.edu/ sp. The
circumstances are more fully described in Section 5.

Since then, the authors have replied and convinced me that the conclusion
of Theorem 2 is correct. Naturally, I want to correct any false impressions that
the posted version may have created. However, I still think that the published
proof of Theorem 2 may puzzle many readers, and that it would be a service to
make public the explanation that one of the authors kindly provided me.

I have decided that the most efficient way of doing this would be to add an
appendix to the original version. I do not intend to alter the original version,
except that I will correct any typos that I find. The original only referred to a
“possible error” in the proof of Theorem 2, and I think that is still valid in that
it does point out what seems to me a gap in the proof.

2 Introduction

Over a year ago, I became interested in recent attempts to “derive” quantum
mechanics from axioms which are physically intuitive. This is generally known
as an “operational” approach. Some of the papers which I read, or attempted
to read to various degrees, were:

Hardy, L., Quantum Theory From Five Reasonable Axioms, arXiv:0101012v4

Barrett, J., Information procession in generalized probabilistic the-
ories, Phys. Rev. A 75 032304 (2007), arXiv:0508211v3

Masanes, L., and Müller, M., A derivation of quantum theory from
physical requirements, New J. Phys. 13:063001 (2011), arXiv:1104.1483v4,
called MM below

Chiribella, G., D’Ariano, G., and Perinotti, P., Probabilistic the-
ories with purification”, Phys. Rev. A. 81, 062348 (2010), arXiv:
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arXiv:0908.1583, (called CDP10 below)

Chiribella, G., D’Ariano, G., and Perinotti, P., Informational deriva-
tion of quantum theory, Phys. Rev. A 84,012311 (2011), arXiv:
arXiv:1011.6451 (called CDP11 below)

Some remarks about my attempts can be found in the July 1, 2012 entry on the
“papers” page of my website, www.math.umb.edu/∼sp . In summary, I wasn’t
able to penetrate any of these to the degree necessary to convince myself of their
soundness.

I put the most effort into Hardy and the CDP papers. Hardy defines the
physical situation unusually clearly and charmingly, and all of the papers men-
tioned above clearly owe a great debt to it. Their approaches are all similar,
though not identical. However, I wasn’t able to follow Hardy’s mathematics in
detail. It is not presented in a precise way, and many of the main results are
relegated to appendices which I found too sketchy to verify in detail.

The CDP papers are extremely intricate. I found what seem to me to be
errors, or at least questionable points. However, even if they turn out to be
errors, the work is so intricate that I can’t guess if they might be essential errors.
A letter to Dr. Chiribella describing some of my questions can be found on the
above web page. However, it is so technical that it will be incomprehensible to
anyone not actively reading CDP in detail.

Barrett does not attempt to derive quantum mechanics, but formulates a
framework similar to Hardy’s in which such a derivation might be attempted.
I have not read the full paper in detail, but have obtained useful insights from
parts of it. I am not sure I can agree with all of its arguments.

Very recently (October, 2012), my attention was attracted to MM, and I
began to read it in detail. In a way, it is my favorite of all the above because it
is clearly written, and sufficiently simple compared to the above that I thought
I might be able to convince myself of its key assertions in a reasonable time.

The authors of MM have posted an expository summary [6], which explicitly
points out what its approach does not do; e.g., it does not address the so-called
“measurement problem” of what happens to a state after measurement. This
is refreshing in a field in which hype and self-promotion are so common. In the
discussion to follow, I may treat MM and [6] as the same paper, in case it seems
too distracting to distinguish between them.

That said, I must record my deep disappointment, and even sorrow, that I
can’t regard MM’s derivation of quantum mechanics as valid, due to what seems
to me a serious error in one key proof and inadequate justification of another.
These will be discussed below.

Assuming that what look to me like errors actually are errors, they seem
serious enough to require major rewriting. I do not know if they could be
repaired, but I certainly would not discount the possiblility.
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I am very concerned by the possibility that I could be mistaken about the
errors. I have made mistakes before, not all that many, but enough to be acutely
aware of my fallibility. I would greatly appreciate the opportunity to discuss
MM in detail with any qualified person who is prepared to discuss it in detail.
(The same goes for Hardy, CDP, and Barrett.)

I am trying to approach this exercise in the spirit of: “this is an interesting
and promising approach; let us think about how it might be completed”. I would
love to see a convincing way to obtain the mysterious structure of quantum
mechanics from simple physical principles. I hope the reader will approach it in
the same spirit.

3 Possible errors

I have debated if I should present first what look like the most crippling errors,
or go through the paper in the order that it was written. The latter would risk
distracting the reader with what might be minor errors. I have decided to use a
mixed approach, going through the paper as it was written, but not necessarily
initially mentioning every little questionable point.

I think there may be questionable points in MM’s setup, but I haven’t noticed
any important errors. A reader who is already familiar with MM may prefer to
skip the following subsection on MM’s basic setup.

3.1 MM’s setup

Any undefined notation will be as in the paper. I hope I can reproduce most
of the paper’s notation. One exception is that my version of LATEXdoes not
include a “blackboard bold” font, used to denote Euclidean space Rn, as in
MM’s equation (3). When it is necessary to distinguish, for example, MM’s
equation (3) from my equation (3), I will use MM(3) for the former.

1. MM(1) presents MM’s notation for states:

ψ =


1

p(x1)
.
.
.

p(xd)

 =


ψ0

ψ1

.

.

.
ψd

 ∈ S ⊂ R
d+1 MM(1)

MM does not fully explain why it inserts the redundant zero’th component
1. My guess is the following.

Call the vector (ψ1, . . . , ψd) an “unaugmented” state, to distinguish it from
MM(1). Hardy [1] and Barrett [2] use unaugmented states. For them, the
procedure of making a measurement on a system in that state corresponds to a
convex-linear map from the state space to the reals R = R1. This is physically
natural.
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The trick of replacing the unaugmented state with MM(1) corresponds the
convex-linear map just mentioned to a linear map from Rd+1 to R, perhaps a
more usual mathematical object. This is an example of what MM calls an “ef-
fect”. One of MM’s Requirements (axioms) is that any linear map is an “effect”
(i.e., that any linear map corresponds to a physically possible measurement).

Evaluation of the zero’th component is now an “effect” which sends any state
into 1. Later (in the proof of Theorem 1), this effect is named 1(·), a notation
which does not seem to be explicitly defined.

In the formulation of Barrett, a particular measurement may have several
possible results. For example, if a classical measurement is tossing a coin, there
will be two possible results; if the measurement is throwing a cubical die, there
will be six. The number of possible results for a measurement called x will
depend on x, and will temporarily be denoted Rx, e.g., Rcoin = 2 and Rdie = 6.

To each measurement x and each possible result r of that measurement,
1 ≤ r ≤ Rx, will correspond a probability p(x, r). The notation greatly simplifies
if we assume (unlike Barrett) that Rx = 2 for all x. In that case, all probabilities
are completely determined by the probabilities p(x, 1) because p(x, 2) = 1 −
p(x, 1), so we may simplify the notation by writing p(x) := p(x, 1).

This is what MM seems to do, though it doesn’t say so explicitly. More
general cases in which some measurements have n > 2 results can be simu-
lated by n successive two-outcome measurements (each on a newly prepared
state).1 Because MM is not explicit about this point, its definitions of “n-
outcome measurements”, “distinguishable states”, and “capacity” on p. 3 seem
logically ambiguous as stated. Where these were mentioned, I have made my
best guess at the author’s intended meaning.

Before leaving this topic, I should point out that Hardy [1] uses unaugmented
states without assuming that p(x, 2) = 1 − p(x, 1). He considers the possibility
that the device which “presents” a state to the measuring apparatus sometimes
fails, so that there is only a probability q that a valid (nonvoid) state impinges
on the measuring device. In such a situation, we would have p(x, 2) = q −
p(x, 1), and Hardy generalizes the notion of “state” to consider this to be an
“unnormalized state”. (A “normalized” state would have p(x, 2) = 1− p(x, 1).)
Hardy’s treatment is quite vague regarding these new “unnormalized” states.
Some key points of MM’s argument cite statements of Hardy without noting
that Hardy’s basic setup differs significantly from MM’s. I cannot always follow
Hardy’s reasoning, and even when I can, it is not always clear to me that Hardy’s
conclusions can be taken over verbatim to MM’s context.

1For example, the first two-outcome measurement would have outcome “Yes” if the n-
outcome neasurement with outcomes r = 1, 2, . . . , n resulted in r = 1, and “No” otherwise.
If the first measurement is “Yes”, stop; otherwise perform a second measurement on a newly
prepared state to see if r = 2, etc. Then the probability of r = 2, say, is defined to be the
observed conditional probability p( second measurement “Yes” | first measurement “No” ).
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3.2 Theorem 1

“Theorem 1. A state in Ŝ2 is pure if and only if it belongs to the boundary
δŜ2.”

The nontrivial part is the “if”. The circumflexes (“hats”) refer to the Bloch
representation which has just been defined in equation MM(13). However, the
Bloch representation does not play any role in the proof of Theorem 1.

Before delving into the proof, let us think about MM’s Requirement 3 for the
special case of a system S2 with capacity 2, which will be the case relevant to the
Theorem. Requirement 3 states that if Ω1,Ω2 is a complete measurement on S2,
then the set of states ψ ∈ S2 with Ω2(ψ) = 0 is equivalent to S1. It follows from
MM’s wording of Requirement 3 that all systems of capacity 1 are equivalent,
where MM defines “equivalent” as “related by an affine transformation”.

It is natural to ask for an explicit description of S1. The first paragraph of
the proof of Theorem 1 provides a very simple one (though it does not state it
in this way): any realization of S1 consists of just one point.

The proof of Theorem 1 constructs a state φ̂one and a so-called “tight”2

effect Ω̂one such that Ω̂one(φ̂one) = 1 and Ω̂one(ψ̂) < 1 for ψ̂ 6= φ̂one. “The two
effects Ω̂one and 1− Ω̂one define a complete measurement on S2”. This implies
that the one-point set {φ̂one} is a realization of S1.

The fact that any two realizations of S1 are equivalent in MM’s technical
sense does not imply that they are physically indistinguishable. For example,
the two one-point state spaces{[

1
1/2

]}
and

{[
1

1/3

]}
are equivalent (because the only transformation between two one-point affine
spaces is trivially affine), but most people would probably think of them as
physically distinct.

This is not a criticism of MM, but a general feature of axiomatizations.
One of the purposes of axiomatization is to strip away “irrelevant” aspects of
a situation so as to concentrate on more important aspects. For example, the
two-dimensional vector space S consisting of all real solutions of the differential
equation y′′(x) + y(x) = 0 can can be studied by proving theorems about the
Euclidean plane R2. Though the set of solutions has additional structure not
posessed by R2, for many purposes they can be considered as “equivalent”, and
it may be easier to think about R2. In MM’s context which attempts to “derive”
quantum mechanics, it is a legitimate issue whether their axioms may strip away
structure which should be considered relevant.

3.3 Possible error in the proof of Theorem 2

The essence of Theorem 2 is the claim that S2 is equivalent to a unit ball in
Rd2 , for some d2. MM’s statement is:

2A “tight” effect Ω is defined as one for which there are two states ψ0 and ψ1 such that
Ω(ψ0) = 0 and Ω(ψ1) = 1.
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“ Theorem 2. There is a set of fiducial measurements for which Ŝ2 is a d2-
dimensional unit ball.”

Here the circumflex on S2 refers to the Bloch representation. According to
Theorem 2, in the Bloch representation, Ŝ2 is a d2-dimensional unit ball; the
abstract S2 is equivalent to a unit ball.

It is not clear if the authors intend to imply additionally that d2 is the
“dimension” of S2, where “dimension” is defined as the “d” of MM(1) (which is
the minimal number of probabilities necessary to specify the state). The latter
does not follow from formal logic, but many readers might make this guess.

The statement of the theorem suggests that construction of the fiducial mea-
surements will establish the equivalence of S2 with the unit ball, but the proof
first attempts to establish the equivalence, and then routinely constructs the
fiducial measurements.

It seems to me that the attempted proof of Theorem 2 does not actually
show that S2 is equivalent to the unit ball. I think that it shows only that S2

is equivalent to a subset of the unit ball which is invariant under a subgroup of
O(d2), where O(d2) denotes the orthogonal group for Rd2 . For an example of
such a subset which is not the entire ball, consider a disc whose circle boundary
is an equator of the unit sphere in R3. This is invariant under the subgroup of
rotations about an axis perpendicular to the disc.

I think that Theorem 2 implicitly assumes what it is trying to prove, namely
that S2 is affinely equivalent to the unit ball in Rd2 for some d2. First it trans-
forms the “standard” representation of MM(1) into the “Bloch representation”.
In the Bloch representation, the pure states of S2 all lie on a sphere in Rd2

centered at the origin. By a trivial normalization, we may assume this is the
unit sphere. In the following, the “hats” on the various quantities refer to the
Bloch representation, and the primes to the normalized version. This is MM’s
notation. The proof may look less formidable if the reader ignores the hats and
primes and just thinks of S2 as a subset of the unit ball of Rd2

The proof now makes the crucial claim:

“Since Theorem 1 also applies to the redefined set Ŝ ′2, it must be a
unit ball.”

But Theorem 1 only states that every point of the boundary of S2 (Ŝ ′2 in the
present notation), is pure (and conversely). The boundary of Ŝ ′2, is a subset of
the unit sphere in Rd2 , but it has not been established that it consists of all of
the unit sphere. In the present Bloch representation, we know that Gd2 consists
of orthogonal linear transformations of Rd2 , but we do not know that it consists
of all orthogonal linear transformations. (If it did, we could transform any pure
state in the unit sphere to any other by some transformation in G2, so that Ŝ ′2
would contain the unit sphere and hence the unit ball.)

The rest of the proof of Theorem 2 routinely constructs the claimed fiducial
effects given its conclusion quoted above that Ŝ ′2 is the entire unit ball. The
statement of Theorem 2 may give the impression that the construction of these
fiducial effects implies that Ŝ ′2 is a unit ball, but such an impression would be
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wrong. The construction of the fiducial effects is valid only if it is already known
that Ŝ ′2 is the entire unit ball.

3.4 The role of Theorem 2 in the paper

For perspective, it may be useful to indicate the essential way in which Theorem
2 is used in the rest of the paper. MM defines a “Bloch representation” of S2

such that in the Bloch representation, S2 is a subset of Rd2 for which any
transformation in the transformation group G2 for S2 is an orthogonal linear
transformation. This is done by using the freedom of choosing an origin for an
affine space to choose an origin which is fixed by all transformations in G2. In
the Bloch representation, G2 is a subgroup of O(d2), the group of all othogonal
linear transformations on d2.

Working in this Bloch representation, if there is any pure state in the bound-
ary of S2 (which there is from Theorem 1), applying all transformations in G2

to that pure state will produce all pure states by Requirement 4. By a trivial
normalization, all pure states may be taken to have norm 1, i.e., S2 is a subset
of the unit sphere of Rd2 .

If we knew that all points of the unit sphere corresponded to pure states of
S2 (which is the conclusion of Theorem 2 ), we could hope to identify G2 by
identifying all subgroups of O(d2) which are transitive on the unit sphere.

The latter problem has been analyzed in mathematical literature (with which
I am not familiar), and MM quotes the following.

• For d2 odd and unequal to 7, the only such subgroup which is connected
is the special orthogonal group SO(d2) (the group of orthogonal transfor-
mations of determinant 1).

• For d2 = 7, there is another possibility.

• For d2 even, there are many possibilities.

Next MM rules out the cases of even d2 by referring to an argument of Hardy,
which is only cited, not reproduced in MM’s context and notation. Hardy’s
axioms include one (his Axiom 2) which is not a Requirement of MM, and I am
not sure how it would follow from MM’s Requirements. There is no discussion
of this in MM. Moreover, Hardy’s argument leading to the conclusion which
MM cites is not clear to me.

In summary, Theorem 2 seems central to MM’s main conclusions. Even
assuming Theorem 2, there seem other aspects of MM’s argument which deserve
close scrutiny and more extensive exposition than given in MM.

4 A possible gap

MM presents a series of lemmas which imply that capacities are multiplicative:
if cA denotes the capacity of system A, then

cAB = cAcB . (1)
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This is an essential ingredient for Hardy’s argument mentioned above, and it
is one of Hardy’s [1] axioms. I could follow most of the reasoning leading to
(1), except that MM uses many times the assumption, that a tensor product
ψA⊗ψB of pure states ψA, ψB , is itself pure. I don’t see how to prove this from
MM’s Requirements, though I wouldn’t be surprised if it could be proved.

Several authors [4, 5, 7] have noted that the purity of ψA⊗ψB would follow
immediately by “partial tracing” it to obtain states of A and B, respectively.
An affine “partial trace” operation does not seem to exist in MM’s framework,
but it would seem a natural Requirement to add. Certainly, a state ψAB for
AB must correspond to some state for A (and for B), and this correspondence
should be affine for the usual reason.

5 Circumstances as of November 24, 2012

I hope the above makes clear that although I admire the work and straight-
forward writing style of authors Masanes and Müller, I have been unable to
convince myself of the soundness of the work as a whole due to what seems to
me an error in the proof of Theorem 2. Readers will be curious what the authors
think of this. I would like to know, too.

On November 12, 2012, a first draft was sent to the authors, which was
acknowledged by Dr. Masanes in a brief message which included no substantive
comments. Email to Dr. Müller did not go through,3 and to date I have been
unable to contact him. On November 19, a nearly final draft was sent to Dr.
Masanes with a message that if he had any objections to it, I would delay making
it public, but no response has been received to date, November 24. The current
version differs only cosmetically from the draft just mentioned.

The authors are probably busy people. and the interval from Nov. 12 to
today, Nov. 24, is less than two weeks, so lack of immediate response may be
understandable. I am posting the “Comments” because of personal circum-
stances which may prevent me from dealing with this matter for an indefinite
period.

Finally, I want to say that I would not be surprised to find similar errors in
other attempted “derivations” of quantum mechanics from operational princi-
ples. I was able to penetrate MM only because it is exceptionally clearly and
simply written compared to other attempts. I am convinced that most physics
papers are published without serious scrutiny and probably never read in detail.

3It was not returned as undeliverable in the usual way that happens, for example, when
an address is mistyped. Instead, a message came back that it had been “delayed” and need
not be resent. For several days ”delayed” messages were received, followed by a final message
that the server had given up trying to deliver the message.
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6 Appendix added Dec. 6, 2012: Resolution of
the “possible error” in Theorem 2

This appendix sketches a resolution of the “possible error” in Theorem 2. The
main idea was kindly communicated to my by Dr. Masanes. I fleshed out the
details, and if there should be any error in it, the error will be mine.

The essence of Theorem 2 (and the only part which is used in the rest of the
paper, so far as I know) is that any system S2 of capacity 2 is affinely equivalent
to a unit ball in a real Euclidean space of dimension d2, where d2 is the affine
dimension of S2. That is what we shall prove.

The published proof of Theorem 2 is written in the context of a particular
realization of S2, which MM calls the “Bloch representation”. MM notationally
distinguishes the Bloch representation by circumflexes on all quantities, and
primes are added to refer to a simple normalization of the Bloch represntation.
In the following, we shall simplify the notation by omitting the circumflexes and
primes, it being understood that the Bloch representation is assumed unless
otherwise specified.

The relevant facts about the Bloch representation of S2 are as follows:

1. S2 is a convex subset of a Euclidean space Rd2 ; i.e, a real vector space of
dimension d2 with a nondegenerate inner product.

2. Elements of the group G2 of S2 are represented by linear transformations
on Rd2 which preserve the inner product, i.e., by orthogonal linear trans-
formations.

3. The affine dimension of S2 is d2.4

Informally, item 3 states that what one would normally call the “dimen-
sion” of the set S2 is the same as the dimension of the ambient space
Rd2 containing S2. This rules out examples like a state space which is a
two-dimensional disc in R3.

Item 3 follows from the construction of the Bloch representation as affinely
equivalent to the “standard representation” of MM(1), which has affine dimen-
sion the “d” of MM(1).5 By construction, the Bloch representation “lives” in
Rd, or Rd2 for the case of a system of capacity 2.

4The affine dimension of a convex subset C of an affine space is defined as follows. Choose
any point O ∈ C as the “origin”, thus converting the affine space into a vector space. The
affine dimension of C is then defined as the dimension of the subspace spanned by all elements
of C. (This dimension is routinely shown to be independent of the choice of O.) This definition
makes “affine dimension correspond to what one would normally call “dimension”, e.g., a line
segment has dimension 1, a disc dimension 2, etc.

5The identification of d as the affine dimension of the “standard representation” may be
logically trickier than it might appear. To appreciate the potential logical problems, consider
a one-point state space like {(1, 1/2)T }. This, like all one-point affine spaces, has affine
dimension 0, but it might appear that d = 1. On the other hand, if d is defined to be the
minimal number of measurements necessary to specify the state, then it could be argued that
d = 0 because there is only one state, and that the state should be represented as {(1)}.
However, it seems unclear how one could know that there was only one state without making
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Applied to a system S2, Theorem 1 asserts that its pure states consist of
precisely its boundary points. When S2 is realized as a subset of Rd2 via the
Bloch representation, the assumption (Requirement 4) that its group G2 acts
transitively on pure states as orthogonal transformations implies that all pure
states have the same nonzero norm. After a trivial normalization, we may take
this norm to be 1. Thus the set of pure states is a subset of the unit sphere
in Rd2 . We want to show that it is the entire unit sphere. Convexity will then
imply that S2 is the entire unit ball.

To prove by contradiction that any point of the unit sphere is in S2. suppose
that some point s of the unit sphere is not in S2. Next note that the origin 0 of
Rd2 (corresponding to the maximally-mixed state of MM(11)) is in S2. Consider
the largest λ ≥ 0 such that λs is in S2. (MM assumes S2 to be compact, so
there is such a λ.) Then λ < 1 because s is not in S2, and λs is a boundary
point of S2 with norm |λs| < 1. By Theorem 1, every boundary point of S2

is pure, so |λs| < 1 contradicts the fact noted above that all pure states have
norm 1. This contradiction shows that the assumption that there exists a point
of the unit sphere which is not in S2 is untenable; hence S2 contains the whole
unit sphere (and unit ball by convexity).

7 Appendix 2 added December 9, 2012

Just today, I received an extensive letter from Dr. Müller addressing various
issues raised in the main “Comment”. I am grateful for these clarifications.

Most of them involve semi-philosophical matters such as definitions and
physical interpretations, but one points out an unjustified criticism at the end
of section 3.4 which I would like to correct:

“Next MM rules out the cases of even d2 by referring to an argument
of Hardy, which is only cited, not reproduced in MM’s context and
notation. Hardy’s axioms include one (his Axiom 2) which is not a
Requirement of MM, and I am not sure how it would follow from
MM’s Requirements. There is no discussion of this in MM. Moreover,
Hardy’s argument leading to the conclusion which MM cites is not
clear to me.

In summary, Theorem 2 seems central to MM’s main conclusions.
Even assuming Theorem 2, there seem other aspects of MM’s ar-
gument which deserve close scrutiny and more extensive exposition
than given in MM.”

Dr. Müller correctly points out that the argument [result] of Hardy is a “stand-
alone mathematical theorem” which doesn’t involve Hardy’s axioms. Although

measurements!

There seems a logical vagueness here which I can’t quite put my finger on and makes me
nervous. Nevertheless, I don’t think there is any physical problem with MM’s statement (on
the bottom of p. 2 that “d is equal to the (affine) dimension of S”.
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I’ve not carefully read the proof of this theorem, I have no reason to doubt it,
and I agree that there would be no reason for MM to reproduce it. When I
wrote the above, I was worried about the relation between Hardy’s K(N) and
MM’s dN given the difference in their setups, and I failed to notice that the
relation is irrelevant in MM’s context.
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