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1 Introduction

This essay analyzes the paper “On the probability of occurrence of extreme
space weather events” by Pete Riley [1]. The paper concludes:

“In this study we have applied a power law probabilistic analysis to
assess the likelihood of a space weather event on the scale of, or larger
than the Carrington event of 1859. . . . we inferred a probability of
∼ 12% that an event [of that magnitude] would occur over the next
decade.”

A recent article on the National Aeronautics and Space Administration’s
(NASA) website,2 is largely devoted to Riley’s article. It gives the strong im-
pression that Riley’s 12% estimate can be taken as scientifically determined and
reliable. It quotes Riley as saying:

”Initially, I was quite surprised that the odds were so high, but the
statistics appear to be correct,” says Riley. ”It is a sobering figure.”

This gives the impression that from Riley’s data, any statistician would arrive
at Riley’s 12% estimate. This essay will express doubt.

1P. Riley, Space Weather 10 (2012), S02012
2http://science.nasa.gov/science-news/science-at-nasa/2014/23jul superstorm/
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In so arguing, I will have to concentrate on the questionable aspects of
Riley’s paper. This will give a negative tone to the discssion, which I regret.
The problem is that I don’t know enough about space weather to highlight what
are probably many valuable insights in Riley’s paper. As a mathematician, my
main reservations concern the paper’s mathematics and its application.

There is another reason to focus on the paper’s shortcomings more than is
usual in scientific writing. Riley’s is not an ordinary scientific paper, discussing
obscure ideas which are meaningful only to a handful of devotees of some sub-
subfield. If his estimate of a probability of 12% of a Carrington-class event in the
next decade is taken seriously, an expenditure of hundreds of billions of dollars
to prepare could be justified. (A study by the National Academy of Science [2]
estimated damages from such an event to be in the trillions of dollars.) If there
is any uncertainty in the science underlying the estimate or in the execution of
that science, it deserves careful scrutiny. I believe that there is such uncertainty.

2 Conclusions

Riley’s paper is technical, and the analysis to follow will necessarily be technical.
Few will read it in detail. Recognizing this, I state the conclusions first.

Mathematics. The beginning part of Riley’s analysis is mathematically incor-
rect. Althogh the error is easily fixed, it fosters a misunderstanding which
may have led to a later incorrect application of the mathematics.

An initial estimate of probability 85% of an event worse than Carrington
in the next decade was rejected by the paper as “not credible”. This es-
timate may have been based on an incorrect application of the paper’s
mathematics—the paper does not contain enough details to be sure. Sub-
sequent estimates may (or may not) have been based on correct applica-
tions, but the paper’s presentation is again too incomplete to be sure.

Questionable assumption. The paper’s analysis is based on an assumption
that the data which it analyzes follows a so-called “power law”. The paper
presents no real evidence for this assumption. The assumption appears to
be false for at least one data set which it analyzes, and questionable for
several.

Possible errors. Probability estimates which I obtained under the paper’s as-
sumptions sometimes differed substantially from those reported in the
paper. In consequence, I believe that the numerical results reported by
the paper should be independently verified before being used in policy
decisions.

3 Overview of Riley’s paper

Disturbances on the sun can result in “magnetic storms” on the earth which
induce strong currents in power lines and other electromagnetic equipment.
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These strong currents can disable power grids and other equipment.
The strongest storm in recorded history occurred in 1859 and is known as

the “Carrington event” after the astronomer who reported it. It is said to have
induced sparking in telegraph lines strong enough to have caused fires.

Such an event today could conceivably disable large portions of the world’s
power grids for months or years. A National Academy of Science report [2]
estimates the potential damage to the United States in the trillions of dollars.

The importance is obvious, but preparations to alleviate the damage are
expensive. The laudable objective of Riley’s paper is to produce estimates, or at
least educated guesses, as to the probability of a Carrington-class or worse event
in the next decade. The paper’s best guess is 12%, presented with numerous
caveats. The popular press has seized on this estimate as one with firm scientific
basis, and it has been widely cited without the caveats.

There are various measures of the strength of a “solar storm”. The paper
considers four measures. For one of these, X-ray fluxes (section 3.2 of [1]),
the size of the Carrington event is not known, so (as the paper notes on its
p. 6), meaningful probability estimates cannot be obtained. For that reason,
discussion of this measure is omitted below.

The other three measures do yield probability estimates from the authors’
power law assumption. These three measures are the strength of coronal mass
ejections, the strength of magnetic anomalies (“magnetic storms”), and a his-
torical record over 400 years of nitrate anomalies in ice cores.

The nitrate anomalies are thought by some to be associated with solar erup-
tions, though (as the paper notes), this is disputed. The interest of the data set
of these anomalies is that it is the only data set analyzed by the paper which
actually contains the Carrington event, so that the mathematics can be based
on its known strength.

Following is a summary of the paper’s estimates of the probability of a
Carrington-class event (or worse) in the next decade, based on the last three
data sets:

Coronal Mass Ejections (CME). This data set spans 15 years. The paper’s
graphs show that the part describing CME’s with speeds between 100 and
700 km/sec cannot follow a power law.3 If this part is discarded, the
remainder consists of two parts, each of which might conceivably follow a
power law, a different law for each part.

An initial estimate based on the first part (corresponding to CME’s with
speeds between 700 and 2000 km/sec.) yielded a probability of 85% of
an event as bad as Carrington within a decade. The author rejected this
estimate as “not credible”.

Despite the failure of the power law assumption to yield a believable es-
timate for this case, the paper applies a similar method to obtain an
estimate based on the remaining observations of CME’s between 2000 and

3The two graphs, in the paper’s Figures (a) and (b) appear inconsistent (as will be discussed
later), but both agree that CME’s from 100 to 700 km/sec cannot follow a power law.
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3500 km/sec. This remaining data consists of only about 20 observations,
out of the original 14,735 observations.

The estimate obtained is really two estimates, each based on an auxiliary
technical mathematical assumption. The two estimates are reported as
probability 12% and probability 8.5%. The author considered the estimate
of 12% as more credible and reported it (along with an estimate for another
data set) as the paper’s main conclusion.

I independently calculated estimates for the same part of the data set
and obtained 14% instead of the paper’s 12%, and 9% in place of the
paper’s 8.5%, which are comparable to the paper’s figures. They may be
of interest in comparison with analyses of the other data sets in which my
arithmetic based on the paper’s data produced estimates widely different
from those of the paper. If I were making some systematic mistake, one
might expect all the estimates to differ.

Geomagnetic storms. Roughly speaking, “magnetic storms” are anomalies
in the earth’s magnetic field “driven by changes in the solar wind”, as the
paper puts it. Their strength is measured by a technically defined quan-
tity known as “Dst ”, which is negative for the cases of interest here. The
Dst of the Carrington event can only be guessed at. An initial estimate
cited in the paper’s reference “Lakhina et al. 2005” was Dst = −1760,
but a later estimate, “Siscoe et al. 2006”, reduced this to −850.

Because that strength is not known, even if the paper’s assumptions and
analysis are correct for this data set, the corresponding probability es-
timates would be expected to vary substantially. Assuming a strength
of Dst − 850, the paper reports a probability estimate of 12% for an
event worse than Carrington in the next decade. Assuming a strength
of Dst = −1700, it obtains an estimate of 1.5%, a difference of an order
of magnitude. This underscores the uncertain nature of the paper’s final
estimate of probability 12%.

The paper considers that this data set “appears to follow a single power
law distribution” (as opposed, for example, to the CME data set which
contains two subsets, each possibly following a different power law). No
goodness-of-fit analysis is included to provide quantitative support for
this opinion, and the two data graphs in the paper’s Figure 8 do not look
obviously that way to my eye.

In particular, like the CME graphs, this graph has an apparent “knee” to
the right of −300 Dst . The paper discounts this knee because it comprises
only 6 events. However, the “knee” of the CME Figure 4 graphs comprises
only about 20 events, yet the paper based its analysis on the data subset
corresponding to that knee.

The point is that the paper makes various arbitrary decisions about what
part of the data to ignore. Perhaps some of these decisions are arguably
justified, but they do add to the overall uncertainty of the analysis.
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Nitrate records. Particles from a solar storm which reach Earth are “gener-
ally believed by space physicists” to result in nitrate deposits which are
preserved in ice. The paper notes that “ice core chemists are skeptical”.
Based on this data, the paper reports as 3% the probability of an event
worse than Carringon in the next decade.

The paper seems to discount this 3% estimate, which is much lower than
some of the others. One of the reasons given is that the data set comprises
only 70 events. Yet the 12% estimate based on CME’s which is the paper’s
main conclusion is based on only about 20 events below the “knee”.

4 The paper’s mathematical methods

The paper’s equation numbers range from (1) to (7). In the following, numbers
in this range refer to the corresponding equations in the paper. Equations
originating in the present review are numbered starting at (101). An equation
corresponding to the paper’s number n is numbered (10n).

I have quoted the paper’s equations exactly as they are written there, even
when I felt that they should be altered to conform with usual mathematical
notation. In discussing the equations, I have sometimes translated them into
more usual notation for clarity.

4.1 Definition of “power law” probability density function
(pdf)

Let us start with a quote from the first paragraph of the paper’s Section 2 on
Methodology:

“Here we outline the basic tools we will employ to compute the
probability of occurrence of an extreme space weather event. A
set of events, x, is said to follow a power law distribution if the
probability of occurrence, p(x), obeys the following relationship:

p(x) = Cx−α, (1)

where the exponent α, is some fixed value and C is a constant de-
termined from where the power law intercepts the y axis.”

Translated into standard mathematical language, this might read:

A random variable X taking on positive real values is said to have
a power law distribution with exponent α if its probability density
function (pdf) p(x) is of the form

p(x) =
{
Cx−α xmin < x <∞
0 otherwise, (101)

5



where α > 1, C > 0, and xmin > 0 are constants. This means that
for all intervals [a, b],

P (a ≤ X ≤ b) =
∫ b

a

p(x)dx .

The paper’s statement that “C is a constant determined from where the power
law intercepts the y axis” is wrong—for α > 0, the graph of x 7→ Cx−α is
asymptotic to the y axis but never intercepts it. The inclusion of xmin in the
definition for α > 1 is essential; otherwise

∫∞
0
p(x)dx will diverge at the lower

limit.
The text of the analyses of the various data sets never tell us what is used

for the crucial parameter xmin, though this can sometimes be guessed from the
graphs. The only mention of xmin that I have been able to find in the text is
on p. 3, where it is stated to be “some appropriate minimun value of x, below
which the power law relation breaks down”. But this is not the same as the
definition in equation (101). Moreover, the xmin apparently used by the paper
for the Coronal Mass Ejection data set, as inferred from Figure 4(b), is not the
smallest x such that the power law breaks down below it.

Rescaling the data by defining x̄ := log10 x, ȳ = log10 y, changes the graph
of a power law x 7→ y = Cx−α to the graph of x̄ 7→ ȳ = log10 C − αx̄, which
is a straight line with slope −α. Most of the paper’s graphs of data make this
rescaling, which makes it easy to guess whether the data do follow a power law.

The author seems to believe that various quantities to be studied will have
power law pdf’s, but no real evidence is presented. Assumption of power laws is
critical to the paper’s analysis, but some of the graphs of data presented which
are represented as following power laws don’t look unequivocally convincing to
me. Examples are Figures 4, 5 and 10.

4.2 Framework of the paper’s mathematical analysis

The paper considers various methods of quantifying the size of solar storms,
such as X-ray fluxes, or the speed of coronal mass ejections, for which there are
historical records. It analyzes these in the following mathematical framework.

It assumes that “events” such as a noticeable coronal mass ejection occur
randomly in time and so are described by a Poisson distribution with rate λ:
the probability of exactly k events between time t and t+ T is given by

p(k events in [t, t+ T ]) =
(λT )k

k!
e−λT .

We remind the reader that the expectation of the number of events in [t, t+T ] is
easily calculated to be λT . To estimate the rate λ from N data points (events)
collected in time interval [t, t+ T ], one divides N by T : λ ≈ N/T .

For the mathematical model to yield physically meaningful results, “strength
of noticeable event” should be identified with the lower limit xmin of the power
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law distribution, (This will be explained in more detail later.) There is internal
evidence that the paper may not have always made this identification.

When an event like a coronal mass ejection occurs, we can then ask what
is its strength. The paper assumes the strength to be a random variable X
with a power law pdf. We are interested in the probability that in a given
time ∆t, (like a decade) we will see one or more events of strength greater
than a given strength xcrit (mostly, xcrit is taken to be a guess at the strength
of the Carrington event). The paper’s uses its equation (6) to calculate this
probability:

“. . . the probability of one or more events greater than xcrit occurring
during some time ∆t:

P (x ≥ xcrit, t = ∆t) = 1− e−N ∆t
τ P (x≥xcrit), (6)

where τ is the total time span of the data set.”4

This is the key equation of the paper. Its justification of equation (6) is very
abbreviated. I would justify it as follows.

We can view the physical situation of looking for critical events (defined as
events x with x ≥ xcrit) as a new Poisson process. Like the old Poisson process,
it describes events which occur randomly in time. A new event is determined
as follows. First we wait for an event described by the original Poisson process,
like a coronal mass ejection (of a predetermined discernible strength or greater).
Then we ask if it is at least as large as xcrit. If it is, we declare that a new event
has occurred. If the old Poisson process had rate λ, this new Poisson process
will have rate λP (X ≥ xcrit), assuming that the predetermined “discernible
strength” is defined as xmin.

To see this in the context of a numerical example, suppose that we define the
predetermined discernible strength to be something less that xmin, say xmin/2.
Suppose in the given time interval τ , we see 100 events of strength xmin/2 or
larger. Suppose 80 of these are of strength xmin or larger. Then among these
80, about 80 p(X ≥ xcrit) are expected to exceed xcrit. Therefore, the rate of
the new process will be estimated at 80 p(X ≥ xcrit)/τ . But the rate of the
old process was approximately λ = 100/τ , so the rate of the new process is no
longer λP (X ≥ xcrit), which is the apparent premise for the paper’s (6).

Continuing under the emphasized assumption, we obtain the paper’s equa-
tion (6) (here numbered (106)) in notation which is more nearly standard and
perhaps easier to read:

P (event in [t, t+ ∆t] larger than xcrit) =
1− P (no event in [t, t+ ∆t] larger than xcrit)

4A more usual notation for P (x ≥ xcrit) would be P (X ≥ xcrit) where X denotes the
random variable corresponding to drawing a value x from the power law distribution (101).
In principle, there is nothing wrong with denoting the random variable by x instead of X,
but that makes x unavailable for other uses. For example to avoid confusion in writing our
equation (101), one would probably want to substitute the x in that equation by another
symbol like z, which would make it look unintuitive.
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= 1− exp(−∆t λ, P (X ≥ xcrit))

' 1− exp(−∆t
N

τ
P (X ≥ xcrit)). (106)

The last line estimates λ ' N/τ as described above.
Notice that in order to apply this equation as written, one has to know

what is to be considered what we are calling “a discernible event” in order to
evaluate N . If we change the definition of “discernible event” that will change
the definition of N without changing ∆t or τ . Hence, if the same value for

P (an event in [t, t+ ∆t] larger than xcrit) = 1− exp(−∆t
N

τ
P (X ≥ xcrit))

is to be obtained, the value of P (X ≥ xcrit) must change. But for fixed xcrit, this
last value depends only on xmin, so the definition of “discernible event” must
somehow be linked to the definition of xmin. As stated above, the physically
correct definition is to identify the two.

None of this is discussed in the paper, so we can only guess at the author’s
definition. Internal evidence to be presented later suggests that an incorrect
definition may sometimes have been used.

4.3 A typo in equation (7)

Before passing to the next section, we note that there is a typo in the paper’s
(7):

“For Bernoulli distributions, that is, independent events that either
happen or not, with a constant probability of occurrence, it can be
shown that the probability of occurrence is given by

P (x) =
1

1 + τ
, (7)

where τ is the average time to the event.”

I had trouble understanding this because the symbol x is not defined. Finally I
realized that the passage should read something like:

p(an event occuring in [t, t+ T ] ) =
1

1 + τ/T
. (107)

The paper is does not say how this is derived, so perhaps it would be helpful
to sketch a derivation. Consider waiting for an event in [t, t + T ] as one of N
independent Bernoulli trials (a “Bernoulli trial” being an experiment with just
two outcomes, “success” or “failure”), corresponding to N successive intervals.
Considering one trial as requiring time T , let τ denote the average time from the
start of the N trials to and including the first success. Calculate this average
time in terms of q := P (an event occurring in [t, t+T]) and solve for q. The
calculation is straightforward except that one has to sum the infinite series∑∞
k=1 k(1− q)k = (1− q)/q2, for which there is a well known trick.

8



5 The paper’s application of the mathematics to
the Coronal Mass Ejection (CME) data

5.1 Possibly incorrect analysis of CME data for speeds
between 700 and 2000 km/sec

The author’s first attempt at analyzing the CME data is described rather
sketchily5 on its p. 6. It appears to have assigned a slope of −3.2 to the part
of Figure 4(a) between speeds 700 and 2000 km/sec, and using this calculates
85% for the probability of an event worse than Carrington in the next decade.
The author rejected this estimate because he considered it “not credible” (too
high), without questioning the power law assumption.

Figure 4(a) clearly cannot represent a power law for speeds between 100 and
700 km/sec because the graph is hook-shaped in this region, whereas a power
law would imply a graph which is a straight line. If mathematics that assumes
a power law is applied to a pdf which is clearly very different from a power law,
one cannot expect meaningful results.

The paper’s description of how the 85% estimate was obtained is too vague
to evaluate in detail. But I suspect that it may have been incorrectly obtained
by a mechanical application of equation (6) to the data corresponding to speeds
greater than 100 km/sec. Specifically, it may have been produced by using the
incorrect value xmin = 100. Here is why.

For a power law distribution (101) with exponent α and lower bound xmin,
one routinely calculates (cf. equation (108) below) that

P (X ≥ xcrit) =
(
xmin
xcrit

)α−1

.

Using the reported slope −α = −3.2 of Fig. 4(a), in equation (6) along with the
incorrect xmin = 100 and the uncontroversial τ = 15, ∆t = 10, xcrit := 5000,
gives

P (event in [t, t+ ∆t] larger than xcrit) =

= 1− exp(−∆t
N

τ
P (X ≥ xcrit)).

1− exp(−(10/15)N(100/5000)3.2−1) .

Setting this equal to the paper’s reported result of probability 0.85 (85%) and
solving for N yields N = 15, 562, which is fairly close to the N = 14, 735 which
the paper reports for the number of events with speed at least 100 km/sec.

However, there seems to be no reasonable way to get the paper’s 85%
estimate from the correct xmin = 700. The corresponding calculation for
xmin := 700 is

P (event in [t, t+ ∆t] larger than xcrit) =
5For example, it refers to “this slope (-3.2)” without saying whether this is the slope of the

pdf of Figure 4(a) or the CCDF of Figure 4(b). An inquiry to the author remains unanswered.
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1− exp(−(10/15)N(700/5000)3.2−1) .

This yields N ' 215, which is far too low since there were on the order of several
thousand CME’s with speeds at least 700. (See below for an explanation of the
qualifier “on the order of”.)

At this point, several natural questions may occur to the reader. First,
instead of taking this roundabout way of questioning the 85% estimate, why
didn’t I simply carry out the correct calculation and compare it with the paper’s
85%? The reason is technical.

The source of the data lists several “speeds” for each CME. One of these,
the so-called “linear” speed, is obtained by fitting a linear polynomial to the
observed datum. Another, the “quadratic speed”, instead fits a quadratic poly-
nomial.6 The paper uses quadratic speeds, but one can search the database
only on linear speeds. There is not a great deal of difference between the two,
but for an airtight comparison with the paper’s conclusion of 85%, one should
use quadratic speeds, and the only way I know to obtain those seems to be to
manually sort all of the thousands of events in the database.

I did carry out the calculation using linear speeds. There were 1719 observa-
tions with linear speed larger than 700. Substituting this for N and xmin := 700
in equation (6) yields an unbelievable probability 99.99% for an event worse than
Carrington in the next decade. This indicates that the power law assumption
is unrealistic for this data set.

The second natural question is the following. Since the author rejected the
85% estimate as “not credible” anyway, what does it matter if it may have been
obtained incorrectly? There are two answers to this second question. First, if the
estimate was obtained incorrectly, readers should take seriously the possibility
that other estimates might have also been incorrectly obtained. The paper’s
exposition of its mathematical methods is so sketchy that most of the estimates
are difficult or impossible to check.

The second answer to the second question is more subtle, at least as im-
portant, and somewhat surprising. It is natural to imagine that the use of
inappropriate N and xmin would have caused the “not credible” estimate, but
this is not true. If the data between 100 and 700 had followed the assumed
power law, the 85% estimate would have been even higher!

To see this, consider the dashed line in Figure 4(a) representing the hypo-
thetical power law pdf that more or less fits the data between speeds of 700
and 2000. This line lies way above the pdf shown in Figure 4(a) for speeds
between 100 and 700. If the number N of events in equation (6) were calculated
according to this power law (instead of being determined by the observed data
reported in the Figure 4(a) histogram), the result would have been a much larger
N in equation (6). Since the right side of this equation is monotonic increasing
in N , an estimate of the probability of an event as bad as Carrington in the
next decade even larger than 85% would have been obtained. This means that

6The terms “linear” and “quadratic” in this context refer to the way of estimating the
terminal speed of a single CME, and have nothing to do with fitting a linear or quadratic
polynomial to the entire set of the CME speed data as in the paper’s Figure 4.

10



the original power law assumption was at fault for the “not credible” estimate,
rather than an incorrect implementation of it.

5.2 Analysis of the CME data for speeds greater than 2000

5.2.1 The paper’s analysis

The paper’s Figure 4(a) looks almost like a straight line for speeds greater than
700 km/sec. The only anomaly is two outlying data points above 2000 km/s.

The graph of Figure 4(b) looks noticeably different. It looks like a straight
line from 700 to 2000 km/sec, but above 2000 km/sec it looks something like
a straight line with a much steeper slope. This indicates that the power law
assumption on which the paper’s analysis is based is questionable for this data
set. If a power law using the slope of the data between 700 and 2000 km/sec
is assumed, then Figure 4(b) indicates that this power law fails to predict the
observed data for speeds larger than 2000.

But what if the data for speeds greater than 2000 did obey a power law, but
a different one than for speeds between 700 to 2000? Is it possible that equation
(6) using this new power law might predict correctly the probability of an event
worse than Carrington in the next decade?

This possibility doesn’t sound like one in which one could have great confi-
dence. If the power law assumption for the data between 700 and 2000 produced
a result recognized as “not credible”, what reason would there be to think that
the prediction based on data between 2000 and 3500 (the largest speed in the
data set) might produce a better estimate?

However, the paper soldiers on to obtain an estimate using only the data for
speeds greater than 2000 km/sec. This reduced data set contains only about
20 observations (a fact obtained from the original source of the data and not
reported in the paper).

Actually, two estimates are obtained, corresponding to two different ways
of estimating the slope of the data for speeds greater than 2000. The two
different estimates of the slope are the maximum likelihood estimate and the
least-squares estimate. (This will be meaningful only to readers who already
knoow what these terms mean—to attempt to explain them would take us too
far afield.)

The respective estimates of the probability of an event worse than Carrington
in the next decade are 12% and 8.5%. The paper considers 12% as the most
credible estimate and reports it (along with a similar estimate from another
data set) as the conclusion of the paper.

5.2.2 An independent analysis

Because of the vagueness of the exposition of the Coronal Mass Ejection (CME)
part of the paper,7 and the author’s lack of response to my inquiries, I carried

7For example, paragraph [31] on p. 6 refers to a “slope (−3.2)” without saying of what
it is the slope, the α of Figure (a) or the α − 1 of Figure (b). The subsequent discussion is
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out an independent analysis of the part of the data corresponding to speeds
above 2000 km/sec, taken from the original source of the paper’s data.8 The
so-called “quadratic speeds” (see the previous subsection for an explanation)
were used, just as in the paper. This was feasible because the reduced data set
was so small—there were only 20 CME’s in the 15 years with (quadratic) speeds
larger than 2000. Denoting the estimated slope of Figure 4(a) as −α (so that α
is the exponent of the pdf of equation (101)), the results were as follows.

The maximum likelihood estimate (MLE) yielded α = 5.9 with a correspond-
ing probability of 14% of an event worse than Carrington in the next decade.
This assumes what the paper characterizes as its “guess” of 5000 km/sec as the
speed of the Carrington event.

These numbers are not exactly what the paper obtained, but they are close
enough that the “slope (-3.2)” of paragraph [31] and the other slopes further on
must refer to the estimate of the exponent α of the pdf p(x) = Cx−α (equiva-
lently, to the slope of the “best fit” line to Figure 4(a)) instead of the slope of the
complementary cumulative distribution function (equivalently, the slope of the
“best fit” line to Figure 4(b)). For example, the reported “slope” −α = −6.1
does yield the paper’s 12% probability estimate, but if the −6.1 referred to the
slope of of the CCDF (Figure 4(b)), a probability estimate of 5% would have
been obtained.

The resolution of this ambiguity will become important in the next subsec-
tions concerning the paper’s analysis of the other data sets. Assuming that the
exposition carries the same meaning as for the CME data just analyzed, the
probability estimates obtained for the remaining data differ by about an order
of magnitude from those given in the paper.

5.3 Analysis of the data on geomagnetic storms

We shall obtain an estimate for p(X > xcrit in a decade), the probability of
an event worse than Carrington in the next decade, from equation (106) (the
paper’s equation (6)). The paper reports the data in the same format as for
the Coronal Mass Ejection (CME) data analyzed above. Again, there is a
Figure 8(a) which is a histogram of the number of events vs. an independent
variable.9 The negative of the slope of the line of best fit to Figure 8(a) (after
adjustment for different scales on the horizontal and vertical axes) estimates the
the exponent α of the power-law pdf p(x) = Cx−α. The MLE estimate of α
(the only estimate considered by the paper for this data set) is calculated from
its equation (4).

The paper states that:

equally vague. Without this knowledge, it is impossible to check the paper’s final probability
estimates. An inquiry to the author remains unanswered.

8Cited in the caption of its Figure 3 as http://cdaw.gsfc.nasa.gov/CME list/.
9Roughly speaking, the independent variable is a measure of the deviation of an average

magnetic field from its normal value, but the nature of the independent variable is irrelevant
to the analysis. The independent variable for the CME data was the speed of a coronal mass
ejection.
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“The slope of the MLE fit is −3.2.”

As with the CME data, the paper does not explicitly say that this is its estimate
of −α, but that is the natural interpretation. If there were any question that the
paper might be referring instead to the slope of the complementary cumulative
distribution function (CCDF) graphed in Figure 8(b), this should be resolved
by the fact that the syntax was essentially the same for the CME data, and
there the meaning was definitively resolved in favor of −3.2 being an estimate
for −α.

We are going to observe that under this interpretation, the paper’s final
probability estimates appear badly incorrect. To do this in a way that facilitates
checking the arithmetic, we interpolate a brief digression.

Equation (106) requires p(X ≥ xcrit) as input, so it will be convenient to
introduce a simple formula for this:

P (X ≥ xcrit) =
(
xmin
xcrit

)α−1

. (108)

The formula just given follows from a routine integration summarized in the
paper’s equation (3) as

P (X ≥ x) =
C

α− 1
x−(α−1) . (103)

(The paper states it for x := xcrit, but xcrit can be any value greater than or
equal to xmin.) Applying this to x := xmin gives

1 = P (x ≥ xmin) =
C

(α− 1)
x
−(α−1)
min ,

whence
C = (α− 1)xα−1

min .

Applying equation (103) with this value of C and x := xcrit gives (108). Sub-
stituting (108) into (106) gives

P (event in [t, t+ ∆t] larger than xcrit) = 1−exp(−∆t
N

τ

(
xmin
xcrit

)α−1

). (109)

The input to this equation taken from the paper is:

∆t = 10, τ = 2009− 1964 = 45, N = 746, xcrit = 850.

The paper never tells us what it uses for xmin, but Figure 8(a) strongly
suggests it is xmin := 100, so that is what we shall use. Evaluation of (109)
with the indicated inputs gives

p(X > xcrit in decade) = 1− exp(−10× 746
45
×
(

100
850

)3.2−1

= 0.78 ,
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or 78%, compared to the paper’s 12%. The 78% is not credible, given that
already more than 15 decades have passed without an event nearly as bad as
Carrington.

The value xcrit := 850 is the paper’s best guess at the strength of the
Carrington (derived from an estimate in another paper), but the higher value
xcrit := 1700 is also considered. For that value, p(X > xcrit in decade) evaluates
to 27%, compared to the paper’s announced value of 1.5%.

5.4 Analysis of the data on ice core samples

The calculation will follow that of the previous subsection. The text states a
“slope” of −2.0, so we use α := 2.0 in equation (108).

The other parameters given in the paper are

∆t = 10, τ = 1945− 1562 = 383, N = 70, xcrit = 18.8× 10−9.

The only missing parameter is xmin, which as usual is not given. However,
Figure 10(a) suggests that it should be between 2× 109 and 3× 109, so we shall
do the calculation twice for these two values.

For xmin := 2× 10−9 we obtain

p(X > xcrit in decade) = 0.18,

or 18%. For xmin := 3× 10−9, this increases to 25%. These are about an order
of magitude more than the paper’s reported 3.0%. I leave it to the reader to
decide if they are credible.

6 Closing remarks

A major conclusion of the paper, as presented in its last paragraph, is

“Additionally, our analysis has shown that a relatively rich subset of
space physics data can be approximated by power law distributions.”

I disagree that it has “shown” anything like that, if the word “shown” is used
as a synonym for “proved” or “demonstrated” as is usual in mathematics.

Given the nature of the subject matter, the presentation of the conclusions
is more important than in more technical scientific work. The popular press
has already represented as scientific fact the estimate of a 12% probability of a
Carrington-type catastrophe costing trillions of dollars. If the 12% estimate is
taken seriously, then one could justify spending hundreds of billions to prepare.
But what if the probability is actually much lower? Those who make policy
are not likely to delve into the mathematical intricacies underlying the 12%
estimate. It is disturbing that it may be becoming uncritically accepted.

I regard the paper’s probability estimates as little more than guesses, all
based on a questionable assumption that the data does follow a power law. In
addition, they are based on other guesses such as the strength of the Carrington
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event for the CME data set and for the geomagnetic storm data set. The paper
does not give us enough information to be sure that its mathematics is correctly
applied. Some of it is almost certainly incorrect or misapplied.

There is nothing wrong with making educated guesses. The matter is im-
portant and the data insufficient to draw firm conclusions. However, educated
guesses should be presented as such, and not as conclusions with which serious
disagreement is unlikely. The paper concludes:

“Our results allowed us to answer a basic question, at least in an
approximate way: How likely are [Carrington] events? . . . our re-
sults overall suggest that the likelihood of another Carrington event
ocurring within the next decade is ∼ 12%.”

This makes it sound as if one might quibble over whether the probability were
10% or 15%, but not over its order of magnitude.

I don’t think the paper does convincingly establish even the order of mag-
nitude. The range of estimates obtained by the paper from various data sets
using various assumptions vary from 1.5% (p. 8, paragraph [39]) to 85% (p. 6,
paragraph [31]).

Because of this, in the paper’s present form, I think its probability estimates
should not be accepted even as educated guesses. There are just too many
uncertainties and unverifiable assumptions in the paper’s analysis, as well as
probable mistakes.

In conclusion, I want to make clear that I do think society should take
seriously the possibility of a Carrington-class event in the coming decades, and
prepare according to the best estimates available as to its probability. My
criticism of various technical aspects of [1] is made in the hope that they may
be helpful in preparing more soundly based estimates in the future. I also hope
that it may make people in awe of mathematics more aware of its limitations.

On the other hand, suppose that the true probability of an event worse than
Carrington in the next decade is two orders of magnitude below the paper’s
12% estimate, on the order of tenths of a percent, which seems conceivable to
me. That could still justify spending a few billions of dollars to prepare for a
catastrophe that could cost trillions. A billion dollars amounts to about $3 for
each inhabitant of the U.S. I would happily pay that amount for insurance.
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