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Comment on “Contextual Values of Observ-

ables in Quantum Measurements”

The Letter [1] of Dressel, Agarwal, and Jordan
(henceforth called DAJ) introduces the concept of
“contextual values” (CV) and claims that they lead
to “a natural definition of a general conditioned av-
erage that converges uniquely to the quantum weak
value in the minimal disturbance limit”. They fur-
ther claim that the usual notion of quantum weak
values “can be subsumed as a special case in the CV
formalism”. The present Comment points out impor-
tant gaps both in their mathematics and the reason-
ing which attempts to relate contextual values with
weak values.

They never precisely define their “minimal distur-
bance limit”, but if their “contextual values” in their
“minimal disturbance limit” is taken to correspond
to the usual notion of quantum “weak values” in the
usual theory of quantum weak measurements, then
it is not true that their “general conditioned average
. . . converges uniquely to the quantum weak value
in the minimal disturbance limit”, where they de-
fine“quantum weak value” Aw in their equation (7):

Aw =
Tr [Ê

(2)

f {Â, ρ̂}]

2Tr [Ê
(2)
f ρ̂]

. (7)

I shall refer to this as the “traditional weak value”,
since quantum weak values are not unique [2,3].

A major gap in their analysis occurs in the pas-
sage from their definition (6) of “the conditioned av-
erage of an observable” to the traditional weak value
(7). Introducing a small “measurement strength” pa-
rameter g, they write the measurement operators as

M̂j(g) = Ûj(g)Êj

1/2
(g). This polar decomposition

is surely possible, but then they go on to attempt to
apply Stone’s theorem to write Ûj(g) = exp[igĜj].

But Stone’s theorem requires that g → Ûj(g) be a

one-parameter unitary group, i.e., that Ûj(g1 +g2) =

Ûj(g1)Ûj(g2), which is surely not true in any gener-
ality in DAJ’s context. For example, if it happened to
be true for some particular Ûj(g), it could be made
false by nonlinearly rescaling g. There may be pos-
sibly be ways to get around this, but this error and

the vagueness of DAJ’s passage from (6) to (7) sug-
gest that prudent readers should have a valid proof
in hand before accepting that (6) implies (7).

Another problem is the lack of a precise definition
of their “minimal disturbance limit”. One gets the
impression that it might have something to do with
their condition [Ĝj , ρ̂] = 0, but the physical motiva-
tion for this condition seems unclear.

If their “minimal disturbance limit” is supposed to
correspond to what is usually called “weak measure-
ment”, then there is a natural definition of this. After
a measurement associated with measurement opera-
tors {M̂j} is made on a quantum system in state ρ̂,
the system will subsequently be in state

M̂j ρ̂ M̂j

†

Tr [M̂j ρ̂ M̂j

†
]

with probability Tr [M̂j ρ̂ M̂j

†
]. Hence a natural (al-

most unique) definition of “weak” or “minimal distur-
bance” limit would be

lim
g→0

M̂j(g) ρ̂ M̂j

†
(g)

Tr [M̂j(g) ρ̂ M̂j

†
(g)]

= ρ̂ for all j.

Under this definition, their claim that (6) implies (7)
in this limit can be rigorously shown to be false in
general. Space limitations preclude giving the proof
here, but it is not difficult and can be found in full in
[4].

I thank the authors of DAJ for private communi-
cations clarifying this paper and regret that I am still
unconvinced concerning the passage from (6) to (7).

S. Parrott
Dept. of Mathematics (retired), Univ. of Mass-
sachusetts at Boston, USA
Present address: 2575 Bowers Rd., Gardnerville, NV
89410, USA, S Parrott@toast2.net

[1] J. Dressel, S. Agarwal, and A. N. Jordan, Phys.
Rev. Lett. 104 240401 (2010)
[2] Jozsa, R., Phys Rev A 76 044103 (2007)
[3] S. Parrott, www.arXiv.org/quant-ph/0909.0295
[4] S. Parrott, www.arXiv.org/quant-ph/1102.4407


