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Abstract. The commented article attempts to prove a “General theorem”
giving sufficient conditions under which a previously introduced “general
conditioned average” “converges uniquely to the quantum weak value in the
minimal disturbance limit.” The “general conditioned average” is obtained
from a positive operator valued measure (POVM) {Êj(g)}nj=1 depending on a
small “weakness” parameter g. We point out that unstated assumptions in the
presentation of the “sufficient conditions” make them appear much more general
than they actually are. Indeed, the stated “sufficient conditions” strengthened
by these unstated assumptions seem very close to an assumption that the POVM
be a linear polynomial (i.e., of first order in g). Moreover, there appears to be
a critical error or gap in the attempted proof, even assuming a linear POVM.
A counterexample to the proof of the “General theorem” (though not to its
conclusion) is given. Nevertheless, I conjecture that the conclusion is actually
true for linear POVM’s whose contextual values are chosen by the commented
article’s “pseudoinverse prescription”.

1. Introduction

Notation will be the same as in the article under review [1], called DJ below. To
compress this Comment to a traditional length, we must assume that the reader
is already familiar with DJ. Its main purpose seems to be to justify a statement
of [2] (called DAJ below) that a “general conditioned average” introduced in DAJ
“converges uniquely to the quantum weak value in the minimal disturbance limit”.
DJ formulates “sufficient conditions” as hypotheses for a “General theorem” (GT)
with this statement as its conclusion.

For simplicity, we shall only consider the special case of DAJ and DJ’s “minimal
disturbance” condition, for which all measurement operators {M̂j} are positive. (All
statements which we make will also hold for DJ’s slightly more general definition.) The

associated positive operator valued measure (POVM) is {Êj} with Êj := M̂
†
jM̂j .

The measurement operators M̂j = M̂j(g) depend on a small “weakness” parameter
g which quantifies the degree to which the measurement affects the system being
measured. Our “minimal disturbance limit” will refer to the so-called “weak limit”
g → 0 for positive measurement operators.



DAJ claims that under these assumptions, its “general conditioned average”
(corresponding to what is more usually called a “weak” measurement followed by
a postselection) is given by the traditional “quantum weak value” (the real part of
DJ’s (1.1)) in the weak limit g → 0. Counterexamples to this claim were given in [3],
examples which DJ attempts to refute by reinterpreting the hypotheses of its “General
theorem”(GT).

The mathematics of these counterexamples is undisputed; the only issue is
whether they satisfy the hypotheses of DAJ or DJ. DJ correctly notes that the first
counterexample using 2 × 2 measurement matrices does not satisfy what they call
the “pseudoinverse prescription”, but DAJ does not clearly state this prescription
as a hypothesis. The second counterexample using 3 × 3 matrices does satisfy
the pseudoinverse prescription, so the following will deal exclusively with this
counterexample.

Contrary to claims of DJ, this counterexample is valid when the hypotheses of
the “General theorem” (GT) are interpreted as written, according to standard usage
of logical language. However, DJ’s analysis of the counterexamples requires a great
strengthening of one of these hypotheses, a strengthening not noted in DJ. We shall
see that when so strengthened, the hypotheses of the GT seem very close to the
assumption that the POVM must be a linear polynomial in the weak measurement
parameter g, i.e.,

Êj(g) = Ê
(0)

j + gÊ
(1)

j where Ê
0

j and Ê
(1)

are constant operators. (1)

The analysis leading to the above conclusions will be straightforward and simple.
DJ’s attempted proof of the GT is densely written, and our analysis of it must be
correspondingly technical. Although probably few readers will be sufficiently familiar
with the proof to convince themselves either of its truth or of the claim that there is
a major error, I hope that the analysis may motivate anyone tempted to employ the
“General theorem” in other work to first carefully scrutinize the proof.

2. Unstated hypotheses for the “General theorem”

The hypotheses of the “General theorem”(GT) which will concern us are:

“(iii) The equality Â =
∑
j αj(g)Êj(g) must be satisfied, where the

contextual values αj(g) are selected according to the pseudo-inverse
prescription.

(iv) The minimum nonzero order in g for all Êj(g) is gn such that (iii) is
satisfied.”

“Minimum nonzero order” is not a standard mathematical phrase, but I take its
occurrence in (iv) to mean that

Êj(g) = Ê
(0)

j + gn
∞∑
k=0

Ê
(k+n)

j gk (2)

with Ê
(k+n)

constant operators and Ê
(n)

j 6= 0. Then the logical content of (iv) is that
all Êj have the same minimum nonzero order, which is to be denoted n.‡ This is a

‡ The restrictive phrase “such that (iii) is satisfied” is logically redundant, since (iii) has already been
assumed. If the authors mean that some alteration of (iii) is to be assumed, such as (iii) with the Êj
replaced by their truncations to order n or (iii) with the original contextual values previously denoted



strange and quite restrictive assumption, but it will not be our main concern. From
here on, we simplify notation by only considering the case n = 1.

When the hypotheses of the GT are given the standard logical interpretation
just described, the counterexample using 3 × 3 matrices which DJ attempts to
refute is indeed a counterexample to the GT. However, DJ’s attempt to refute the
counterexample appears to assume something like the following,

Denote by Ê
′
j(g) the truncation of the series (2) to order n, namely,

Ê
′
j(g) := Ê

(0)

j + Ê
(n)

j gn . (3)

Then (iv) assumes (iii) with the Êj(g) in (iii) replaced by Ê
′
j(g), but with the

contextual values αj(g) unchanged (i.e., the contextual values for the truncated

POVM {Ê′j(g)} are the same as for the original POVM {Êj(g)}). More explicitly,
it assumes that ∑

j

αj(g)Ê
′
j(g) = Â. (4)

DJ’s objection to the counterexample, given after its equation (7.4), is that it does
not satisfy (4). DJ does not explicitly say that the contextual values for the truncated
POVM are the same as for the original POVM, but that seems implied by the fact
that it uses the same symbols, αj(g) for both. Also, the details of DJ’s attempted
proof support that interpretation.

Next recall that the contextual values ~α(g) = (α1(g), . . . , αn(g)) are assumed to
satisfy the “pseudoinverse prescription”

~α = F+~a, (5)

where ~a is a list of eigenvalues for the system observable Â, and F+ is the Moore-
Penrose pseudoinverse for the matrix

F = F (g) := [ ~E1(g), . . . , ~En(g)]. (6)

Here the column vector ~Ej(g) is the list of eigenvalues for Êj(g), and F is the matrix
composed of those columns. Note that F is g-dependent, but we write F = F (g) only
when necessary to emphasize this point, to avoid possible confusion with the result of
applying the matrix F to a vector. If contextual values exist (in general, they don’t),
they are uniquely determined by the “pseudoinverse prescription” (5).

Since the contextual values for the truncated POVM {Ê
′
j(g)} are assumed the

same as those for the original, we also have

~α = F ′
+
~a (7)

with

F ′ := [ ~E′1(g), . . . , ~E′n(g)], (8)

where the ~E′j(g) are the column vectors of eigenvalues for Ê
′
j(g). Equation (7) also

uniquely determines the contextual values αj(g), so it would be surprising if both (5)
and (7) would hold except in the trivial case in which Êj = Ê

′
j for all j. In that case,

we can make {Êj} linear (i.e., of form (1)) by replacing the parameter g by a new

αj(g) replaced by others or some combination of these, then standard logical language requires that
this be explicitly stated. I have considered several alternative interpretations of (iv), but all have led
to inconsistencies with other parts of DJ. In the absence of requested clarification from the authors,
I selected the one which seems most nearly consistent with the rest of DJ.



parameter h := gn, so for brevity we shall refer to this as the “linear case”. Indeed,
I do not know of any example of a nonlinear POVM for which both (5) and (7) can
hold. The hypothesis that both do hold seems very close to a hypothesis that the
original POVM be linear.

3. Error or gap in proof

Readers thinking of building on the work of DAJ and DJ may need to convince
themselves of the validity of its “General theorem”. Since its attempted proof is
densely written, it may be of help to pinpoint what I think is a critical error (or at
least a serious gap), even under the strong hypothesis that the POVM is linear.

This is equivalent to the assumption that the matrix F = F (g) determining the
contextual values ~α is first order in g, in which case the minimum nonzero order of
F which the proof calls n is n = 1. To expose the gap, we use these assumptions to
rewrite the questionable part of the proof in a simplified form. It applies to a matrix
F with singular value decomposition F = UΣV T , where Σ is a diagonal matrix and
“U and V are orthogonal matrices”. All of these matrices depend on the weak limit
parameter g.

The contextual values ~α (which the proof renames ~α0) are determined by the
pseudoinverse prescription ~α = ~α0 = F+~a, where ~a is the vector of eigenvalues of A.
Here F+ is the Moore-Penrose pseudoinverse of F , given by F+ = V Σ+UT , where
Σ+ is the diagonal matrix obtained from Σ by inverting all its nonzero elements.

In reading the following, please keep in mind that if correct, it should apply to
any matrix function F = F (g) which is first order in g, i.e., F (g) = P + gQ with P
and Q constant matrices. Although an F = F (g) derived from a POVM has a special
form given in part by DJ’s preceding equation (5.9), nothing in the following proof
fragment uses this special form.

The proof mentions “relevant” singular values, but for brevity I have omitted the
definition of “relevant” (which does not involve the special form of F ) because for the
simple counterexample to be given, it will be apparent that every singular value will
be “relevant” for some ~a (because F will be invertible). The simplified proof fragment
is:

Since the orthogonal matrices U and V have nonzero orthogonal limits limg→0 U =
U0 and limg→0 V = V0 , such that UT0 U0 = V0V

T
0 = 1, and since ~a is g-independent,

then the only poles in the solution ~α0 = F+~a = V Σ+UT~a must come from the
inverses of the relevant singular values in Σ+.

Therefore, to have a pole of order higher than 1/g, there must be at least one

relevant singular value with a leading order greater than g1.

[This much seems all right, but I cannot follow the next and last paragraph.]

However, if that were the case then the expansion of F to order g1 would have a

relevant singular value of zero and therefore could not satisfy (5.12), contradicting

the assumption (iv) about the minimum nonzero order of the POVM. Therefore,

the pseudoinverse solution ~α0 = F+~a can have no pole with order higher than

O(1/g) and the theorem is proved.

If correct, the above proof fragment would imply that no linear matrix function
F (g) = P + gQ, with P and Q constant matrices, could have a singular value with a
leading order greater than g1. However, it is easy to construct counterexamples such



as

F :=
[

1 + g 1
−1 −1 + g

]
, (9)

which has a singular value [g2 +2−2
√
g2 + 1]1/2 = g2/2+O(g4). (The other singular

value is [g2 + 2 + 2
√
g2 + 1]1/2 = 2 + g2/2 +O(g4).)

Without performing the somewhat messy calculation of the singular values, one
can see directly from Cramer’s rule that since detF (g) = g2, F (g)−1 ∼ g−2 which
would make the contextual values ~α = F−1~a asymptotic to g−2. The essence of the
full proof of the GT is to show (continuing to assume n = 1 for simplicity) that the
contextual values are O(1/g), which implies that the “numerator correction” of DJ’s
(5.7) vanishes in the limit g → 0.

Let us try to follow in detail the last paragraph of the proof in the context of
the counterexample. First note that DJ’s equation (5.12) is just the contextual value
equation F (~α) = ~a written in components.

Applied to the F of (9), the last paragraph asserts that if F has a singular value of
order greater than g1 (which it does), then “the expansion of F to order g1 would have
a relevant singular value of zero . . .”. However, this is wrong because the expansion
of F to order g1 is F itself, and for g 6= 0, all singular values are positive.

I suspect that the last paragraph may be based on an erroneous implicit
assumption that truncating a Σ corresponding to F (g) will produce the Σ for the
truncated F , i.e., that truncation commutes with taking of singular values. If this
were true, then the statement just questioned would be true.

To make the above more explicit, write Σ = Σ(F ) to denote the dependence of
the matrix Σ of singular values on F , and write τ(F ) for the linear truncation of F .
I can begin to make sense of the last paragraph only by assuming that

Σ(τ(F )) = τ(Σ(F ));

which says that the singular values for the truncated F are the truncations of the
singular values for F . The counterexample shows that this is false for its F which
satisfies τ(F ) = F :

Σ(τ(F )) = Σ(F ) =
[

2 + g2/2 +O(g4) 0
0 g2/2 +O(g4)

]
6=
[

2 0
0 0

]
= τ(Σ(F )).

Recall that (4) was my best guess at the intended expansion of DJ’s (iv) from
its logical meaning. (A direct request to the authors to confirm or correct this was
ignored.) My next best guess would be that the αj(g) in (4) might represent contextual
values for the truncated POVM {Ê

′
j} that would not necessarily be contextual values

for the original POVM {Êj}. However, the above objection to the proof would still
apply.

Whatever the intended meaning of DJ’s (iv), it presumably imposes some
condition on the linear truncation (still taking n = 1 for simplicity) of the original
POVM {Êj(g)}, which seems an unreasonable hypothesis for a “General theorem”.
Suppose one has an experiment whose detector corresponds to a certain nonlinear
POVM. Why should it matter if the linear truncation of this POVM has some
property? A theorem whose hypotheses eliminate even simple cases such as the second
counterexample of [3] with a quadratic POVM can hardly be considered “General”.
The strong impression given by both DAJ and DJ is that the traditional weak value



(the real part of DJ’s (1.1)) is essentially inevitable when the measurement operators
are positive. A main point of both [3] and the present Comment is to dispel any such
false impression.

It should be emphasized that (9) is only a counterexample to DJ’s attempted
proof, not a counterexample to the conclusion of the GT under the assumption that
the POVM is linear, i.e., of the form (1). For a counterexample to the conclusion, one
would need an F which is derived from a POVM.

Actually, I conjecture that the conclusion that the “general conditioned average”
is given by DJ’s (1.2) (i.e., the traditional weak value generalized to mixed states)
is true for linear POVM’s under the pseudoinverse prescription. If so, its proof will
surely have to use in some essential way the special form of an F which comes from a
POVM (e.g., all rows sum to 1).

I have sketched such a proof but have not written it in detail, so I make no claims.
I will be happy to share the ideas of the proof with any qualified person who might
be interested in expanding on them. They are not difficult, but annoyingly detailed.
If I decide not to write them up in journal-ready detail myself, I may put a sketch of
a proof on my website, www.math.umb.edu/∼sp.

A main aim of this comment is to focus attention on the case of linear POVM’s.
If the conjecture is true, it might help to explain why (to my knowledge) actual
experiments have only observed the traditional weak value (the real part of DJ’s
(1.1), 〈ψf |Â|ψi〉/〈ψf |ψi〉 ), despite the fact that arbitrary weak values can be obtained
from different measurement procedures, as stressed by DJ. Since these experiments
are difficult and have only recently been performed, perhaps they correspond to the
simplest POVM’s, i.e., linear POVM’s arising from positive measurement operators.
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