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Everything on this website is copyrighted, but I am particularly sen-
sitive to the present document due to the possibility of errors. I shall
be questioning a historic experiment. It is easy to make an arith-
metic mistake or misinterpret something, particularly for a math-
ematician like me who is not very familiar with the experimental
literature.

If you want to quote this document, please quote the latest ver-
sion with its date and when it was retrieved, along with a link to
the current document. (The current link, which is not expected to
change, is www.math.umb.edu/ sp/papers/gracom.pdf.) That way,
if any errors turn up, I will have the chance to correct them. And
of course, I shall be grateful for any suggestions or notification of
errors.

1 Introduction

This essay is a product of a posting to the Internet discussion group sci.physics.research.
It can be accessed through google.groups.com, as well as other ways.

The posting asked what happens when a single quantum particle enters a
Mach-Zehnder interferometer containing detectors in both arms, as pictured in
the following diagram. Only part of the interferometer is shown because we
shall be concerned only with that part.

incoming particle
\ U detector
\ /
\ /

50-50 beam splitter ___\/____
\
\
\

L detector

The nature of the quantum particle is unspecified, but the experiments to be
discussed use photons. The U detector “fires” if it senses a particle in the
“upper” arm, and similarly for the L detector in the “lower” arm.
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It is sometimes said that quantum theory implies that exactly one of the
detectors will register (“fire). This is not so much a prediction of quantum
theory as of the concept of “particle” as an indivisible entity. For example, this
would be true of a billiard ball which had 1/2 probability of taking each path.

Another way to say this is that the detectors will be perfectly anti-correlated.
I had seen statements suggesting this in the literature, but never one which
stated it unequivocally. My posting asked if there were any experimental evi-
dence of this. If there were, it could be taken as further evidence of the “photon”
concept that light is sometimes best described as consisting of particles.

One person very helpfully replied with two references. One is a famous 1985
experiment of Grangier, Roger, and Aspect [1], to be called GRA below. The
other is a 2004 updating of the GRA experiment using technological improve-
ments which had been developed in the meantime [2]. The latter [2] will often
be identified simply as “Thorn”, after its lead author. It is too distracting to
reference “Thorn, et al.” repeatedly, and Thorn has too many authors to form
a convenient acronym.

I want to make clear that “Thorn” always refers to the paper [2], and not to
its lead author J. J. Thorn. Wherever I feared any possibility of misinterpreta-
tion, I reverted to “Thorn, et al.”.

I initially thought that the citations of GRA and Thorn fully answered my
question. But on studying these papers, I realized that neither convincingly
demonstrated anti-correlation. This essay will explain why.

2 General discussion of GRA and Thorn

The discussion of GRA is rather condensed, but it does include enough raw data
to enable a statistical analysis. By contrast, the discussion of Thorn is generally
more extensive, but unfortunately omits some critical discussion and data.

A casual reader might well obtain from GRA the impression that it demon-
strates perfect anticorrelation. For example, its first paragraph states:

“During the past fifteen years, nonclassical effects in the statistical
properties of light have been extensively studied from a theoretical
point of view [1], and some have been experimentally demonstrated
[2-7]. . . . However, there has still been no test of the conceptually
very simple situation dealing with single-photon states of the light
impinging on a beam splitter. In this case, quantum mechanics
predicts a perfect anti-correlation for photodetections on both sides
of the beam splitter (a single-photon can only be detected once!),
while any description involving classical fields would predict some
amount of coincidences. In the first part of this letter, we report on
an experiment close to this ideal situation, since we have found a
coincidence rate, on both sides of a beam splitter, five times smaller
than the classical lower limit.”

However, we shall argue that it does not demonstrate perfect anti-correlation!
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To explain what it does demonstrate, we need a brief detour into classical
photodetection theory. Classical theory treates light as a classical wave de-
scribed by a complex electric vector function of space and time ~E. The power
per unit area perpendicular to the direction of travel transferred by the wave
is called the intensity I, and is proportional to | ~E|2. The probability of a light
wave of intensity I exciting a photodetector (i.e., causing it to “fire”) in a small
time interval [t, t + ∆t] is given by the theory of classical photodetection as
I(t)∆t+O(∆t2).

When a light wave (treated classically) impinges on a beam splitter, the
electric fields in the upper and lower arm have the same magnitude, but differ
by a multiplicative phase (complex function of modulus 1). Thus classical theory
predicts that the firings of the two detectors will be positively correlated with
the intensity of the electric field and hence with each other.

Suppose a succession of particles, N in all, are sent into the beam split-
ter. Let NL and NU, denote the number of firings of the L and U detectors,
respectively, and let NLU denote the number of simultaneous firings. “Simul-
taneous” firings are defined relative to a small “window of time” of length w
surrounding each firing. Firings at times tL and tU are considered “simulta-
neous” if |tL − tU| < w. Then NL/N,NU/N, and NUL/N are experimental
approximations to the probabilities pL, pU, and pLU of L firings, U firings, and
simultaneous firings, respectively.

Because classical theory expects U and L firings to be positively correlated,
it expects that p(U |L) := pLU/pL should be at least as large as pU. That is, it
predicts that

pLU ≥ pLpU . (1)

An experimental version of (1) is

NLU

N
≥
(
NL

N

)2

. (2)

A quantity called the second-order coherence, often denoted g(2)(0), is de-
fined as

g(2)(0) :=
pLU

pUpL
≈ NLU/N

(NL/N)(NU/N)
=
NLUN

NLNU
.

Thus classical theory predicts that

NLUN

NLNU
≈ g(2)(0) ≥ 1 . (3)

An experiment which measures g(2)(0) sufficiently smaller than 1 will show that
the classical theory cannot adequately describe that experimental situation.
But of course, that will not prove some alternative theory, such as that U and
L should be perfectly anticorrelated!

If U and L are perfectly anticorrelated, then g(2)(0) = 0. The GRA experi-
ment measures g(2)(0), (which it calls α), obtaining g(2)(0) = α = 0.18±0.06. <
1. This suggests that the classical photodetecton model cannot explain GRA’s
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experimental results and also suggests (though perhaps less strongly since α is
closer to 0 than to 1) that U and L might not be perfectly anticorrelated.

Detailed statistical analysis is necessary to decide if the evidence is strong
enough to reject either the classical theory or perfect anticorrelation. A sta-
tistical analysis to be presented in the next section will indicate that the GRA
observations are very improbable under the hypothesis of perfect anticorrelation.

The experiment of Thorn, et al., is conceptually the same as that of GRA,
but the experimental techniques are significantly different. The reported results
are also significantly different: Thorn obtains g(2)(0) = .0188 ± .0067, which is
an order of magnitude smaller than GRA’s result.

Thorn, et al., does not mention this discrepancy. It does, however, remark
that g(2)(0) = 0 is expected.

3 A statistical analysis of the GRA data

3.1 The Poisson model for events occurring randomly in
time

This section reminds the reader of the Poisson model for “events” which occur
randomly in time. Here “event” is used in the everyday sense of “something
which happens”, not in the technical sense of “subset of a sample space”.

Suppose events occur randomly at a rate of an average of λ per time unit.
This will be called a Poisson process. The Poisson distribution states that the
probability p(k, T ) of exactly k events (k = 0, 1, 2, . . .) in a time interval [t, t+T ]
of length T is

p(k, T ) =
(λT )k

k!
e−λT .

This is derived by dividing the time interval into a large number n of small
subintervals, using the binomial distribution to give the probability that ex-
actly k subintervals contain at least one event, and taking the limit n→∞. The
natural nature of the derivation under very conservative assumptions (princi-
pally that for sufficiently small subintervals, one can ignore multiple events in
a subinterval) almost guarantees that the Poisson distribution will have wide
practical significance.

It is routine to calculate that the average number of events (i.e., expectation
of the number of events) in an interval of length T is λT , as expected from the
definition of λ. In practice, the rate λ is estimated by counting the number
of events some interval [t, t + T ] and dividing by T . Of course, larger T are
expected to yield better estimates of the rate.

3.2 Summary of data from GRA

For the reader’s convenience, we collect here the relevant data from the GRA
experiment. These are somewhat scattered over the first five pages of GRA,
with most appearing on p. 177.
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The experiment includes an “alarm” which “sounds” whenever a photon
enters the interferometer. This is done by generating two photons at the same
time (“twin” photons), one of which is channeled to the alarm detector (where
it is destroyed uppon triggering the alarm), and the other to the input of the
interferometer. GRA and Thorn, et al., generate the twins in different ways.

The alarm is triggered at a rate of 8500 counts per second (cps),1 which
is determined by counting the number of times the alarm is triggered. When
the alarm “sounds”, the upper and lower detectors are monitored for a time
“window” of 9.4 ns (nanoseconds, 9.4× 10−9 seconds), presumably centered on
the time that a photon triggering the alarm would arrive at a detector.

In the upper arm of the beam splitter, the rate of detections is only 5 per
second. Of every 10,000 photons triggering the alarm, only about 6 are detected
in the upper arm.2 Statistics for the lower arm are not explicitly given, but we
will take them to be the same.

We will assume that detections in the upper arm are described by a Poisson
process with rate of 5 counts per second, and the same for the lower arm. We
do not expect the two Poisson processes to be independent; indeed we would
expect the opposite if upper and lower detections are perfectly anti-correlated.

The experiment ran for 18,000 seconds (five hours), which implies about
90,000 detections in each arm. However, only 9 coincidences (i.e., simultaneous
U and L detections) were observed in the five hour run. A “coincidence” is
defined as both U and L detectors firing in the 9 ns window triggered by an
alarm.

Initially, only 9 coincidences in 90,000 “trials” sounded to me like good ev-
idence for anti-correlation. One expects some coincidences due to “accidental”
counts. One source of accidental counts is two photons arriving almost simul-
taneously in the interferometer beam and coincident with an alarm, with one
directed by the beam splitter into the upper arm and the other into the lower
arm. But back-of-envelope calculations indicated that the probability of such
accidentals could be low enough that careful analysis would be needed.

Following is a summary of the relevant data from the GRA experiment.

Duration of experiment = 18,000 seconds (five hours)
Rate of photons triggering the alarm = 8500/sec

1The actual rate was 8800 cps but the reported rate 300/s of “dark counts” has been
subtracted. That is, a detector is observed to fire at a rate of 300 firings per second even when
no photons impinge on it, and the 8800 cps presumably includes these dark counts.

2Only photons in the arms which are coincident with the alarm are counted. Assuming
negligible loss in the beam splitters (a reasonable assumption for modern beam splitters and
one which is explicitly confirmed by Thorn, et al.), this implies that the beam incoming to
the interferometer contains roughly 1000 unpaired photons for every alarm-coincident photon
eventually detected in the arms.

The proportion of false alarms to detected coincidences will be about the same. Assuming
perfect components, false alarms could simply be ignored. But detectors and/or associated
time-to-amplitude converters sometimes have signficant “dead time”—a time after a detection
during which further detections are impossible. According to [3], dead time can significantly
affect the measured value of g(2)(0). GRA contains no discussion of such potentially confound-
ing effects, nor is enough raw data reported to allow the reader to estimate their importance.
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Rate of photon detections (heralded by alarm) in upper (lower) arm = 5/sec
Width of time window for detection = 9.4 nanoseconds
Number of coincident detections during the five hour experiment = 9

3.3 Hypothesis testing

This subsection reminds the reader of the protocols of statistical hypothesis
testing. In our case, the hypothesis to be tested will be that the upper and
lower detectors are perfectly anti-correlated.

Having formulated a hypothesis, one does an experiment to test it. Usually,
there is no experiment whose results will definitively confirm a hypothesis, but
it is often possible to reject it as implausible.

Under the assumption of the hypothesis, sometimes one can calculate the
probability that the experiment will produce the result that it did. If this
probability is sufficiently small, then one is tempted to rejects the hypothesis.
The smaller the probability, the more one is tempted. Since “sufficiently small”
implies an arbitrary cutoff, instead of arbitrary rejection some prefer to use the
calculated probability as a measure of degree of disbelief in the hypothesis: the
lower the probability, the stronger the disbelief.

We shall calculate that the probability of observing nine or more coincidences
assuming that the detectors are perfectly anti-correlated is no more than 10−26

This can hardly be taken as good evidence for perfect anti-correlation!

3.4 A simple statistical analysis

Let AC denote the hypothesis that if there is a photon in the upper arm, then
a perfect detector in the lower arm will never fire, and vice versa. i.e., perfect
anti-correlation. This is the hypothesis which we shall try to reject.

This subsection will present a simple statistical analysis showing that assum-
ing hypothesis AC, the probability of obtaining the observed nine coincidences
or more is less that 10−26, i.e., negligible.

Imagine two parallel lines of time, one above the other. The upper line
will refer to the U detector and the lower to the L detector. Below is a crude
diagram.

Suppose it takes S seconds for a photon to get from the alarm to the upper
detector, and the same for the lower detector. Each time a that the alarm
sounds, and that a photon triggers the upper detector in the time window opened
by the photon at a, make a mark (an “x” in the diagram) at time t = a + S
on the upper line . That is, the x’s are the centers of the 9.4 ns time windows
during which both U and L detectors are enabled and in which U fires. The
time corresponding to the j’th “x” is denoted tj .

On the lower line directly below each “x”, indicate an interval centered at
the time t of width 9.4 ns. The endpoints of the interval are denoted by brackets
in the diagram.
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"x" =
_____x________x____________x____x__ center of window opened by alarm

t1 t2 t3 t4

_[___ ___]_[__ __]_____[___ [__] ___]_______ time of lower detection

[ I1 ] [ I2 ] [ I3 ]
[ I4 ]

Some of the intervals will overlap. Because of the overlapping, the diagram of
the lower time line can be ambiguous. To resolve the ambiguity, the intervals
are also drawn staggered below the lower line rather than on it. There seems no
way to produce subscripts in “diagram mode”, so the intervals are named “I1,
I2”, etc. instead of I1, I2, . . . in the diagram. However, elsewhere they will be
called I1, I2, . . ., and similarly for t1, t2, . . ..

Imagine that the intervals I1, I2, . . . on the lower line are lifted directly up
to the upper line. These lifted intervals are the windows in which a U photon
was observed. They are not drawn on the upper line to avoid cluttering the
diagram. A photon was detected in each upper interval, but not necessarily in
the corresponding lower interval.

Given a U detection, GRA considers an L detection as “coincident” if it lies
in the 9.4 ns interval on the lower line corresponding to the interval on the upper
line in which the U detection occurred. Under our anti-correlation hypothesis
AC, all coincidences are “accidental” coincidences. They may be caused by
stray photons. Another possibility is that photon 1 may trigger a U detection
in interval Ik (which was opened by the alarm) and another photon triggers an L
detection in the same interval. This last possibility is unrelated to experimental
imperfections, so we must be careful to account for it. The accounting will be
done in such a way that forseeable experimental imperfections are also accounted
for.

We are assuming throughout the hypothesis AC that when a single photon
exits the beam splitter, if it triggers the L detector, it never triggers the U
detector and vice versa, i.e., perfect anti-correlation. (We are assuming it to try
to show that it implies that the experimental results are very improbable.)

Under this hypothesis, one would expect the events of a particular U de-
tection in a particular window Ik and an L detection in same window to be
independent. Such a simultaneous detection in both arms would be impossible
under the ideal conditons and perfect anti-correlation, but could be experimen-
tally observed if given a U detection, a photon somehow accidentally showed
up in L for the reasons given above or some other reason. A photon showing
up in L would be a random event, which would have occurred independently of
the U detection. If the reader can think of any likely experimental imperfection
which could reasonably call the independence into question, I would be grateful
for the information.

This independence is the key assumption necessary for our analysis so we
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state it explicitly:

Independence Assumption: Under the hypothesis of perfect; anti-correlation,
for any time window Ik,

p( L detection in Ik | U detection in Ik ) = p( L detection in Ik ) .

We emphasize that our expectation of independence rests on the anti-correlation
hypothesis AC. For example, it certainly would not be expected if perfect cor-
relation were assumed instead of perfect anti-correlation.

When I first wrote down the Independence Assumption, it seemed so reason-
able as to be almost beyond dispute. (For example, it seems to be an implicit
assumption of Thorn’s Appendix A, so obvious as to be unworthy of mention.)
But further consideration made me uneasy. I still can’t think of any grounds
on which it could be seriously disputed, but though still reasonable, it somehow
seems less inevitable than originally.

For the benefit of readers who may share such unease, it may be helpful to
remark that the analysis will not actually require the Independence Assumption,
but only the weaker assumption that

p( L detection in Ik | U detection in Ik ) ≤ p( L detection in Ik ) .

This weaker assumption does seem almost beyond dispute. It says that when
U and L are perfectly anti-correlated under ideal conditions, the information
that U has fired in an experiment cannot make one give greater odds that L has
simultaneously fired than one would give without that information.

The probability pI of an L detection in any one of the intervals Ik is given
by the Poisson model as:

pI := p( L detection in Ik )

= 1− p( no L detection in Ik ) = 1− e−5×9.4×10−9
≈ 4.7× 10−8.

We are interested in the rate of coincident detections, in order to determine
how likely under the anti-correlation hypothesis AC are the 9 coincidences that
were observed in 5 hours. Waiting for a coincidence is waiting for an event that
occurs randomly in time, i.e., a Poisson process.

At some starting time, we wait for the alarm to sound. The alarm opens a
9.4 ns. window in which both U and L detectors are enabled for detection. If
U does not detect a photon, we ignore the alarm event and wait for the next
alarm. If U does detect a photon, we ask if L detected a photon in the same
window. If L did not detect a photon, we ignore the alarm event and wait for
the next alarm. If L did detect a photon, we record a “coincidence” event.

More abstractly, we are waiting for an event in the Poisson process which
the upper detector monitors. When one occurs, we perform a binary experi-
ment with probability pI of “success” (defined as detection by L in the 9 ns
window Ik in which the U detector fired). If “success” does occur, we record a
coincidence, otherwise not. This compound experiment is also described by a
Poisson process.
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The rate λC for this for this new “coincidence” Poisson process is the rate
for the original upper arm process times pI , i.e., λC = 5 × pI ≈ 2.35 × 10−7

coincidences per second.
The expected number of coincidences NLU in the entire 5 hr (18,000 sec)

experiment is λC×18, 000 ' .0042 which tells us immediately that nine or more
will likely be extremely improbable. In fact,

p( 9 or more coincidences in 18,000 sec ) =
∞∑
k=9

(18, 000λC)k

k!
e−18,000λC

= 1−
8∑
k=0

(18, 000λC)k

k!
e−18,000λC

' 1.19× 10−27 < 10−26,

i.e., vanishingly small.Thus not only does the experimental data not support the
anti-correlation hypothesis AC, but strongly suggests that it should be rejected.

That does not imply that the hypothesis is almost surely false, but only that
the data presented in GRA do not support it. Of course, the problem may lie
with the data rather than with the hypothesis.

3.5 General remarks on Thorn, et al.

The Introduction describes how the present work was motivated by citations
of the experiments of GRA and Thorn, et al., in sci.physics.research (s.p.r.),
as demonstrating perfect anti-correlation. The person citing these papers is a
Professor of Physics at the University of California at Davis.

After studying GRA and Thorn in detail, I don’t agree that they can be
taken as the definitive evidence which the poster seems to think that they are.
The results of Thorn, et al., are directly comparable to GRA’s, but differ by an
order of magnitude. It seems very strange that Thorn, et al., does not mention
that.

One of the two has to be wrong. If I had to bet, I would bet that it is GRA
which is wrong, but the writeup of Thorn, et al., is not sufficiently definite (e.g.,
some critical raw data is missing) to conclude that its results are definitive.

I have noticed what seem to me questionable points in the experimental setup
of Thorn, et al., points which are not addressed in the writeup. (However, a
later paper [3] of one of the authors does address some of them.) My guess is
that a careful analysis would confirm the experimental conclusions of Thorn, et
al., but that is only a guess.

When I began this essay, I planned to describe in detail my doubts about
Thorn, et al. But upon careful study, my main doubt evaporated. The re-
maining doubts are sufficiently technical and detailed that they will probably
be meaningful only to those who have carefully studied Thorn. I will be happy
to discuss them privately with anyone with a serious interest in the matter,3 but
I have decided that posting them at this time might invite misinterpretation.

3I would expect anyone who inquires to recognize an obligation to be familiar with Thorn,

9



Thorn, et al., was published in the American Journal of Physics, a widely
read expository journal. Its very title suggests that its intent is pedogogical,
to help other small physics departments set up similar experiments. Judged by
the standard of that intent, it is excellent. It may not have been intended as a
research paper, and to question its methods in detail might appear as nitpicking.

All I will say here is that I don’t think that either GRA or Thorn, et al.,
definitively settle the issue of perfect anticorrelation. If I had to bet, I would
bet on perfect anticorrelation, but I wouldn’t bet more than I could afford to
lose.

4 Final thoughts: A near-paradox resolved by
the minimalist interpretation?

My original question amounted to: If a single quantum particle enters a beam
splitter, is it ever detected at both outputs?

The wording of the question almost presupposes the answer. The very con-
cept of “particle” as an indivisible entity suggests that it cannot be split between
the two arms of the beam splitter.

If a wave description is used, then splitting would be expected, but GRA
does seem to rule out that description for this experiment. However, if the
beam splitter is completed to form a Mach-Zehnder interferometer, (as GRA
actually did), then the wave description explains the experimental results while
the particle description fails.

In principle, the arms of the beam splitter could be so long that communi-
cation at the speed of light would be impossible between the U and L detectors.
Seemingly, whether L fires or not should depend only on the local conditions
around L, and similarly for U. But the symmetry of the situation seems to imply
that the local conditions should be the same for L as for U.

This glosses over the subtlety that the situation is not truly symmetric be-
cause the L detector is in the transmitted beam, whereas the U detector is in
the reflected beam. However, all analyses of optical beam splitters known to
me claim that there is a phase shift of i (90◦) in the reflected beam (relative to
the transmitted beam). For a photon described by a classical complex electro-
magnetic field, this phase shift would multiply the field by the imaginary unit i.
If we allow the photon to be described by a quantum wave function Ψ = Ψ(x)
(which may be controversial but is frequently assumed, at least implicitly),4 the
phase shift replaces Ψ by iΨ.

If the incoming quantum particle (e.g., a neutron) is indisputably described

et al., and to be willing to discuss it. In the past, I have received inquiries, sometimes
anonymous (!), of the nature of: “Tell me what you think is wrong with it.” If I do invest
hours writing up a critique, I may never hear from the person again.

4 Such an assumption is often hidden by denoting the upper and lower beams by notation
such as |U〉 and |L〉, respectively, with the totality denoted as (|U〉+ |L〉)

√
2. This differs in

no essential respect from assuming that the photon is described by a wavefunction Ψ = Ψ(x)
which is nonzero only close to the locations xU and xL of the U and L detectors, respectively.
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by a wave function Ψ, then the argument below requires that a beam splitter
for such a particle behaves like an optical beam splitter in that the reflected
beam differs from the transmitted beam by a phase.

Let xU denote the position of the U detector and xL the position of the L
detector. Then the symmetry just discussed suggests that for small w, |Ψ(xU +
w|2 = |Ψ(xL + w)|2. This says that the local conditions are the same near the
U and L detectors.5

According to quantum mechanics, the probability of U firing should be pro-
portional to |Ψ(xU)|2 = |Ψ(xL)|2, which is the same as the probability of L
firing.6 Moreover, the firing of L should be independent of the U firing because
of their spacelike separation.

In summary, the argument states that the local conditions at U and L are the
same, so each has the same probability p = 1/2 of firing. The firings are inde-
pendent, so the probability pUL of simultaneous firings is nonzero (specifically,
pUL = (1/2)2 = 1/4).

One poster to sci.physics.research addressed this question, though in such
a roundabout way that I doubt that many readers realized that he was doing
it. There is a “minimalist” interpretation of quantum mechanics which holds
that the quantum wave function Ψ is nothing more than a mathematical tool
for predicting experimental results. No “reality” should be ascribed to it.

According to this interpretation (as I understand it), it is wrong to imagine
that Ψ might be associated with triggering the detectors. If we ask what does
trigger the detectors if neither Ψ nor a particle nor an electromagnetic wave,
a “minimalist” would presumably reply that the question is meaningless. (The
argument above disposes of the possibility that local conditions trigger the de-
tectors.) I agree that this “minimalist” interpretation is logically consistent (at
least in the context of the experiments we are discussiong), but I have to wonder
if it is the best that can be given.

It reminds me of an old joke about the boy who was afraid of kreplachs. A
kreplach is a pastry that goes in a soup, associated with Jewish cooking. It is
made by placing a bit of ground meat in the middle of a square of dough and
folding over the corners.

To cure the boy of his phobia, his mother demonstrates how a kreplach is
made. She puts the meat in the center of the square of dough and asks him if
that makes him afraid: he says not. Then she folds over three of the four corners
and asks again: he says he is not afraid. Finally she folds over the fourth corner
and he screams in terror: “Aagh, kreplach!”.

How does this relate to our beam splitter experiment? Suppose we close off
the lower arm and just consider the detector in the upper arm. As I understand
it, a typical single photon detector consists of a vaccuum tube with several
conducting plates inside maintained at an electrical potential difference with

5Locally, a phase shift between upper and lower beams cannot be distinguished from an
irrelevant global phase shift Ψ 7→ cΨ, c constant.

6This is slightly oversimplified, but the reader should know how to expand the argument.
It may look more natural in notation like Ψ = (|U〉 + |L〉)/

√
2 in which there are effectively

only two positions U and L. See footnote (4).

11



respect to each other. An incoming “photon” or electromagnetic disturbance of
some kind, kicks an electron off the first plate, which is accelerated by the field
toward the next plate. When it hits the next plate, it kicks off several more
electrons to be accelerated toward the next plate. This chain reaction continues
until the current in the last plate is sufficient to be detected. It is hard to
imagine that anyone would question that the initial electromagnetic disturbance
(whether one calls it a “photon” or something else) causes the detector to fire.

This description would seem to be completely acceptable. Presumably, who-
ever invented the detector would have relied on something like it.

Of course, the same applies to the lower detector if the upper arm is blocked.
But if both arms are unblocked, suddenly the description is perceived as mean-
ingless, similar to the completion of the kreplach. If the description of firing
as determined by local conditions were accepted as meaningful, then it would
either contradict usual interpretations of quantum mechanics or would imply
the possibility that the spacelike separated U and L can communicate, i.e., that
L “knows” when U has fired so that it must not fire.

Granted, there are some assumptions in the above argument that could be
questioned. Perhaps it is illegitimate to associate a wave function with photons,
even though this is commonly done as explained in the footnotes. Perhaps
beam splitters for massive particles like neutrons have different properties than
optical beam splitters, invalidating the above phase shift arguments.7 But the
assumptions do seem reasonable and similar to assumptions commonly made. I
would not have the hubris to call this a “paradox”, but to me it seems close.8

I think that the value of the minimalist interpretation may be that it reminds
us how carefully we must use classical language to avoid contradictions with
experiment. But to take it as the last word seems premature. If we don’t look
for interpretations which go beyond minimalism, then we surely will not find
any. Perhaps there is nothing to find, so looking is a waste of effort. And
perhaps not.

5 Comments and credits

July 29, 2014 I thank Dan Riley for pointing out that in the analysis of the
GRA experiment, a statement that 8500 photons per second enter the

7If readers spot any other questionable assumptions, I would be grateful for the information.
8It is similar to an objection to quantum mechanics which I have seen attributed to Einstein.

(I can’t remember where I saw it.) That version considers a quantum particle which passes
through a single pinhole in a wall. The wall is taken as the x-y plane, and before passing
through the pinhole, the particle is traveling along the z axis.

On the other side of the wall, the pinhole is at the center of a sphere covered with particle
detectors. The symmetry of the situation suggests that local conditions on the sphere should
be invariant under rotations about the z-axis. Local conditions should be the same for any
two detectors at the same polar angle θ to the z-axis.

Some of the detectors with the same polar angle will be spacelike separated, but according to
most interpretations of quantum mechanics, only one detector can fire. If firing is determined
by local conditions, how can two spacelike separated detectors “know” that only one of them
can fire?
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interferometer should instead say that the alarm is triggered by photons
8500 times a second. (The text has been corrected.)

The original statement overlooked that the efficiency of the alarm detec-
tor may be low. The essay’s analysis never used the 8500/s rate and is
unaffected.
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