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1 Introduction

The first paragraph of the paper, which it set in boldface type, reads:

“The pigeonhole principle: ‘If you put three pigeons in two
pigeonholes, at least two of the pigeons end up in the same
hole’ is an obvious yet fundamental priniciple of Nature as
it captures the very essence of counting. Here however,
we show that in quantum mechanics, this is not true! We
find instances when three quantum particles are put in two
boxes, yet no two particles are in the same box.”

When I saw this a few weeks ago, I looked forward to an amusing puzzle, in view
of previous experience with writings of some of the authors. I did not expect to
find a convincing quantum violation of the classical pigeonhole principle, and
after reading the paper’s short and simple example, I did not find one. Indeed,
I wondered if anyone would take seriously the authors’ conclusion:

“In conclusion, we presented a new quantum effect that requires us
to revisit some of the most basic notions of quantum physics – the
notions of separability, of correlations and interactions. It is still
very early to say what the implications of this revision are, but we
feel one should expect them to be major since we are dealing with
such fundamental concepts.”

Today I found in my inbox a free sample of some articles in Physics World,
the member magazine of the Institute of Physics. One of them is entitled “Para-
doxical pigeons are the latest quantum conundrum”, by science writer Marcus
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Woo. It quotes one of the authors of “Pigeonhole principle”, Jeff Tollaksen, as
follows:

“It [the quantum pigeonhole principle] really has immense implica-
tions.”

”This is at least as equally profound, if not more profound [than the
Einstein-Rosen-Podolsky paradox].”

So, I guess that at least the editors of Physics World must take seriously the
authors’ conclusion that their discovery will require “major” revisions of “some
of the most basic notions of quantum physics”.

2 The authors’ argument

Following is a summary of the authors’ argument. The reader is urged to have on
hand the original from http://arxiv.org/abs/1407.3194. The original argument
occupies only about a page, and is simple.

First the authors consider a system with one quantum particle and two boxes
denoted L (left) and R (right). The system is in state

|+〉 =
1√
2

(|L〉+ |R〉) . (1)

Then the authors consider a tripartite system describing three particles (indexed
1, 2, 3), in an initial state

Ψ := |+〉1|+〉2|+〉3 .

They state:

“Now, it is obvious that in this state any two particles have non-
zero probability to be found in the same box. We want, however,
to show that there are instances in which we can guarantee that
no two particles are together; we cannot arrange that to happen in
every instance, but, crucially, there are instances like that. To find
those instances we subject each particle to a second measurement
[emphasis mine] . . .

WHOA!

At this point, I did a double take. The authors are talking about a second
measurement, but they haven’t said anything about a first measurement !

Reading further into the argument, it turns out that the first measurement
is an imaginary measurement — it isn’t actually performed, but we imagine
how it could have come out if it had been performed.

In a usual jargon, this first measurement is a counterfactual measurement,
and the authors’ argument is a counterfactual argument. It is well known that
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counterfactual arguments are problematic in quantum mechanics, but let’s sol-
dier on and see what it leads to in this case.

What the authors call the “second measurement” is a genuine measurement
which the authors define. In the context of the authors’ argument, it can be a
considered as a so-called “postselection” in which the initial state Ψ is “postse-
lected” onto a final state Φ defined by

Φ := |+ i〉1 |+ i〉2 |+ i〉3 with |+ i〉 := (|L〉+ i|R〉)/
√

2 .

This is not precisely how the authors characterize it, but the authors’ more
complicated measurement (with respect to 8 orthogonal projectors) yields the
postselection as one of its results because the projector onto Φ is one of the 8
orthogonal projectors defining the measurement.

The authors are interested only in the case in which the postselection is
successful — i.e., after the “second” measurement (the first measurement being
unperformed), the initial state Ψ has been transformed into the final state Φ.

Next, they return to discuss the imaginary first measurement, which so far
has not even been defined. The authors describe it intuitively as follows:

“Let us now check whether two of the particles are in the same box.
Since the state [Ψ] is symmetric, we couold focus on particles 1 and
2 without any loss of generality – any result obtained for this pair
applies to any other pair.”

They then define a measurement with respect to two orthogonal projectors
{Πsame

1,2 ,Πdiff
1,2 } which intuitively yields one result if particles 1 and 2 “are in

the same box”, and the other result if they are not.
They argue that if the imaginary first measurement had resulted in the

two particles being in the same box, and that imaginary measurement had
been followed by the genuine second measurement, then Φ could not have been
obtained as the postselected state. Hence (according to the authors), particles 1
and 2 were in different boxes all along, and the same for the other two pairings
of particles 2 and 3 and particles 1 and 3.

The implicit assumption seems to be that when the quantum system is in
state Ψ, it is meaningful to speak of particles 1 and 2 (say) being in different
boxes. That is, the authors’ argument seems to rest on an unstated assumption
that there is some underlying classical reality in which each particle is in some
definite box. (If this were not the case, then how could one speak of particles 1
and 2 being in different boxes?)

Bell’s Theorem1 as well as many other quantum “paradoxes”2 have taught us
that an assumption that quantum measurements reveal some underlying reality
existing before the measurement often leads to apparent paradoxes. I would
not hesitate to characterize this as “profound”. However, I can’t see how the
authors’ “quantum pigeonhole” effect is of a different nature, a new profundity.

1For references, see any good, modern quantum mechanics text beyond the elementary
level.

2My favorite for its straightforward and totally surprising nature is [2].
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The main difference that I see is that in Bell’s and many “paradoxes” of the
same nature, “reality” assumptions are often mixed up with “locality” assump-
tions.3 Sometimes one can save “reality” by denying “locality”, or vice versa.
But the “quantum pigeonhole” effect seems to have nothing to do with locality.
I am not sufficiently familiar with quantum paradoxes to know if there are other
“paradoxes” which do not involve “locality”

The authors seem to view their argument as showing that three objects can
occupy two boxes with no two of them in the same box. But I think it can
equally well be viewed as denying that it is permissible to speak of a particle as
being in a definite box before it is observed to be in that box.

And I would be surprised if many will view that last observation as profound.
To illustrate, consider the one-particle state (1):

|+〉 =
1√
2

(|L〉+ |R〉) .

Is the particle in the left box or the right box at this moment? The reader is
challenged to mentally formulate an answer.

I can think of only three possibly sensible answers:

1. The particle is in both boxes because if measured, it will sometimes appear
in one box and sometimes in the other.

2. The particle is in neither box because there is no box in which it will
surely appear if measured.

3. The question is meaningless.

My personal choice is answer 3. Given the reader’s choice, how can a later
postselection (tomorrow, say) possibly change his or her answer unless one goes
so far as to claim that the future can influence the past?4

Of course, a later postselection can give more information. For example,
if we postselect on L tomorrow, then after the postselection, we can be sure
that the particle is in the left box. But how can that change whether today the
particle is in both boxes or neither? In the context of their more complicated
example, that is what the authors appear to be claiming.

It is instructive to ask the same questions for a particle in a mixed state

ρ =
1
2
PL +

1
2
PR ,

where for A = L or R, PA denotes the projector on |A〉. This is analogous to a
classical situation in which the particle can be said to be definitely in one box
or the other, but we don’t know which.

3“Locality” assumptions posit that physical objects cannot travel faster than the speed of
light, that information cannot be transmitted faster than the speed of light, that spacelike
separated observers cannot communicate, and other assumptions of that nature.

4At least two of the authors do appear to have gone this far in previous publications, but
in the present paper they do not.
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Suppose that tomorrow, we postselect on |L〉. This means that we measure
with respect to the orthonormal basis |L〉, |R〉, and only consider the case in
which the measurement yielded |L〉. Suppose that tomorrow the measurer claims
that the particle had to have been in the left box all along because if it had been
in the right box, we could not have obtained the result |L〉 for the postselection.

In a classical situation in which we agree that it makes sense to say today
that the particle is definitely in one box or the other (but we don’t know which),
this would seem a correct conclusion. It might be a justifiable conclusion for
the quantum mixed state ρ.

But it is at least questionable (I imagine that most would say it is wrong)
for the pure quantum state (|L〉+ |R〉)/

√
2. This is because interference effects

(as in a Mach-Zehnder interferometer) make untenable the classical view that
the particle is definitely in one box or the other before we measure it.

It seems to me that the authors’ argument is just a more complicated way of
presenting the above conundrum. It seems to rest on a classical view that each
of its three particles can be said to be definitely in one box or the other. My
personal view is that there is indeed something strange and profound to think
about here, but that the profundity is already present in the simpler example
just analyzed.

3 A simple alternative view

The authors’ argument involves an imaginary measurement on particles 1 and
2 with respect to two orthogonal projectors Πsame

1,2 and Πdiff
1,2 . In a two-particle

space these constitute a resolution of the identity (i.e., a collection of orthogonal
projectors which sum to the identity). In the three-particle space, tensoring
these with the identity I3 for the Hilbert space of the third particle yields a
resolution of the identity {Πsame

1,2 ⊗ I3, Πdiff
1,2 ⊗ I3 } for the three-particle space.

The authors state correctly that the argument given for particles 1 and 2 also
applies by symmetry to particles 1 and 3 and to particles 2 and 2.

However, this is only part of the story. If we collect together (using a fairly
obvious notation)5 all of the six operators corresponding to the three choices of
two-particle spaces,

{ Πsame
1,2 ⊗ I3, Πdiff

1,2 ⊗ I3,

Πsame
1,3 ⊗ I2, Πdiff

1,3 ⊗ I2,
5However, the notation does have to be interpreted sympathetically. The problem is that

while the notation for the tensor product of an operator on the two-particle space correspond-
ing to particles 1 and 2 and an operator on the space of particle 3 is obvious, e.g., Πsame1,2 ⊗ I3,
how do we denote a corresponding operator on the two-particle space corresponding to par-
ticles 1 and 3 like Πsame1,3 , tensored with an operator on the space of particle 2, like I2. We
use Πsame1,3 ⊗ I2 even though technically, the I2 should go in the “middle”. Inventing a new

notation to handle this technical problem (such as defining an interchange operator which
interchanges the spaces of particles 2 and 3 and writing the various expressions in terms of
the interchange operator) seems more trouble than it is worth.
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Πsame
2,3 ⊗ I1, Πdiff

2,3 ⊗ I1 }, (2)

we do not obtain a resolution of the identity for the three-particle space because
the ranges of these six projectors are not orthogonal, and they do not sum
to the identity. Therefore, they do not define a measurement. However, this
nonexistent “measurement” is precisely the “intermediate measurement” which
the authors discuss around their equation (4).

Now the magician’s sleight of hand begins to reveal itself.6 For each of the
three two-element subsets of {1, 2, 3}, the corresponding operators of our (2) do
constitute a resolution of the identity and so define a genuine measurement. For
example, for the subset {1, 2},

M1,2 := {Πsame
1,2 ⊗ I3, Πdiff

1,2 ⊗ I3},

defines a bona fide measurement. So do the corresponding M1,3 and M2,3

defined by the second and third lines of (2), respectively.
But how do we perform all three measurements together? The reader is

urged to think about this before reading the subsequent discussion.
Before proceeding, we make one more observation. Since the intermediate

measurement is only an imaginary measurement, one could argue that we could
simply imagine making three two-projector measurementsMi,j where i, j range
over all two element subsets of {1, 2, 3}. Perhaps (though still questionable), if
we admit the validity of discussing imaginary measurements as if they were
real.7 But then we should also admit the validity of basing conclusions on any
other imaginary measurements which we might dream up. We shall see that
there is such an imaginary measurement which yields the opposite conclusion
from the paper’s.

Though the union of the six operators comprising the three measurements
M1,M2, andM3 do not comprise a measurement they do commute, so we can
obtain a resolution of the identity by replacing them by the following obvious
refinement.8

For A = L or R and j = 1, 2, or 3, Let ΠA
j denote the projector on |A〉 in

the Hilbert space of particle j. For example, ΠR
3 is the projector on |R〉 in the

Hilbert space of particle 3.
Then the eight possible products ΠA1

1 ⊗ΠA2
2 ⊗ΠA3

3 with eachAj = L or R, j =
1, 2, 3, form a resolution of the identity for the three-particle space which refines
the projectors of equation (2). For example,

Πsame
1,2 ⊗ I3 =

6Of course, this metaphor is not intended to imply that the authors deliberately misled us.
7If in real life we performed measurement M1,2, that would alter the pre-measurement

state Ψ, and also in general the result of a subsequent measurement M1,3, so perhaps we
should not allow imagining performing M1,2 and M1,3 simultaneously. The rules supposed
to be obeyed by such imaginary measurements are not clear to me!

8A refinement of a collection of commuting projectors {Pj} is a collection of mutually
orthogonal projectors {Qk} such that each Pj is a sum of some collection of Qk.
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ΠL
1 ⊗ΠL

2 ⊗ I3 + ΠR
1 ⊗ΠR

2 ⊗ I3
= ΠL

1 ⊗ΠL
2 ⊗ΠL

3 + ΠL
1 ⊗ΠL

2 ⊗ΠR
3 + ΠR

1 ⊗ΠR
2 ⊗ΠL

3 + ΠR
1 ⊗ΠL

2 ⊗ΠR
3 ,

and similarly for the other particle pairs. Although technically, we cannot mea-
sure with respect to the projectors of (2), we can measure with respect to this
refinement, and the latter measurement gives the information that the paper’s
argument requires.

Actually, it gives more information. For example, if the final result corre-
sponds to the projector Π1

1 ⊗ Π1
2 ⊗ Π1

3 it gives the information that after the
measurement, all three particles are in Box 1, information that could not be ob-
tained from knowing the answer to the three questions “Are particles i and j in
the same or different boxes” for the three two-element subsets {i, j} of {1, 2, 3}.
This will be discussed more fully below.9

No matter what the result of the measurement with the refinement, we al-
ways find two or more particles in the same box! And all measurement results
are compatible with success of the postselection on Φ. If we want, we can
choose to view measurement with respect to the refinement as a counterfactual
one which we only imagine performing, like the author’s intermediate “measure-
ment” (which technically is not a measurement, counterfactual or not, because
(2) is not a resolution of the identity).

This new counterfactual argument parallels the paper’s, but gives a different
result. If the paper’s reasoning is valid, then this new reasoning should be
valid, too. The big difference between the two, is that counterfacuality is an
extraneous element of the new argument, inserted only for comparison with
the authors’. The new argument does not require conterfactuality, unlike the
authors’.

How can two valid arguments give different results? I don’t think they can.
My interpretation is that the new argument is valid because it can be formulated
in ordinary, noncounterfactual terms, and that the authors’ argument should be
regarded as either invalid or meaningless, according to taste.

Before leaving the topic, I should acknowledge that what we have been illus-
trating with our refined measurement is discussed in the paper’s section entitled
“THE NATURE OF QUANTUM CORRELATIONS”, which I found difficult
on first reading, and still cannot follow in complete detail. As I interpret it, this
section observes that our refined measurement actually gives more information
than their argument requires. The authors view this as a drawback because it
disturbs the initial state Ψ more than would their (seemingly) proposed “mea-
surement” with respect to the six projectors Πsame

i,j , Πdiff
i,j where i, j ranges

over all two-element subsets of {1, 2, 3}. The paper does not seem to recognize
that its six-projector “measurement” is not actually a measurement.10 To make

9Some readers might view as splitting hairs the difference between the (improper) “mea-
surement” with the six projectors of (2) and the genuine measurement with the eight projectors
of the refinement of (2). A reader could be pardoned for considering them as effectively the
“same”. Yet this distinction is made by the authors and is critical to their argument. Because
the distinction is important to the paper’s argument, we must make it too.

10The paper repeatedly refers vaguely to its intermediate procedure as a “measurement”
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it into a measurement, it must be refined to the eight-projector measurement.
The refinement inevitably gives more information. Apparently for this reason,
the authors consider the measurement of the refinement as being different from
their proposed six-projector “intermediate measurement”. But if it is regarded
as different, then the intermediate measurement is not a “measurement” in the
standard usage of the term.

The authors have not told us how their “intermediate measurement” can
be implemented within standard quantum mechanics without implementing the
refinement. It may not make any difference because the intermediate measure-
ment is only an imaginary measurement anyway. It seems to me that as soon
as we open up the Pandora’s Box of allowing the discussion of imaginary mea-
surements which are never made, we enter some kind of Never-Never Land.

On page 3, the authors express the opinion that their “global measurement”
(identical to the “inermediate measurement” so far as I can see)

“is in some sense, better than the detailed meaurement [presum-
ably our refinement] as it delivers the information about correlations
while minimizing the disturbance that it produces to the state.”

As an amusing final observation, note that actually, their intermediate “mea-
surement” does not disturb the state Ψ at all because it is an imaginary, coun-
terfactual measurement! The same is true for our eight-projector refinement if
we agree not to actually perform it, but only to imagine performing it!
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