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in the limit of arbitrarily weak measurements. This Comment notes a calculational
error in a key lemma which invalidates the proof of the theorem.
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The article [1] presents a theorem which gives sufficient conditions for a
“general conditioned average” introduced in [3] to yield the traditional weak
value in the limit of arbitrarily weak measurements. The “general conditioned
average” corresponds to what would more usually be called a (preselected and)
postselected weak measurement. Since there is only one theorem in that article,
we will simply call it “Theorem”. Essentially the same result with the same
attempted proof appears in different notation in [2]. This Comment notes a
calculational error in a key lemma which invalidates the proof of the Theorem.

The statement of the Theorem is too complicated to repeat here in full, so
we state only enough of it to explain the error. It concerns a positive operator
valued measure (POVM) denoted {Ey(ε)}, with the parameter y in a finite set
of integers 1, . . . , N . The parameter ε > 0 describes the “weakness” of the
measurement; smaller ε correspond to weaker measurements.

To use the POVM to obtain the average value of an observable FX (readers
can ignore the subscript X, which is an artifact of the paper’s unusual notation)
one seeks so-called “contextual values” which the paper calls fY (ε; y) (again, the
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subscript Y can be ignored) such that

FX =
∑
y

fY (ε; y)Ey(ε) for all ε > 0. (1)

For the purposes of this exposition, we shall assume POVM’s of the so-called
“linear” form, which means that

Ey(ε) = E(0)
y + εE(1)

y (2)

with E(0), E(1) constant (i.e., ε-independent) operators, though the Theorem
purports to cover more general cases.

The essence of the Theorem’s proof is to write the general conditioned aver-
age as a sum of two terms, one of which converges to the traditional weak value
in the limit ε→ 0, and the other of the form∑

y

fY (y; ε)Tr[Hy(ε)],

where the Hy(ε) are certain operators depending on the operators of the POVM
and given by a certain formula. From the form of the formula, it is obvious that
Hy(ε) = O(ε2), so the Theorem’s conclusion will follow if it can be shown that
the contextual values are O(1/ε).

The paper’s Lemma 1 concludes that the contextual values are indeed O(1/ε)
for linear POVM’s, though it is stated slightly differently as a statement about
the singular values of a matrix S ′ of the “linear” form S ′ = P + εS with P,S
constant matrices. The matrices P and S are not arbitrary, but are derived
in a certain way from the POVM. The corresponding restrictions on P and S
are not explicitly stated as hypotheses for Lemma 1, but appear earlier in the
discussion.

Next we restate Lemma 1 including these restrictions explictly. The state-
ment is identical to the statement of the same lemma in [5], except for re-
placement of that paper’s notation with the present notation. That paper is a
Corrigendum to [4], which contains essentially the same erroneous proof of the
Theorem as the paper under discussion.

Restated Lemma 1. The singular values of the M × N dimensional ma-
trix S ′ = P + εnSn with M ≤ N have maximum leading order of εn, where
P = [p1

~1 . . . pN~1] and Sn = [ ~E1 . . . ~EN ] such that
∑
j pj = 1 and

∑
j
~Ej = ~0.

Notes:

1. ~1 stands for the column vector all of whose elements are 1, and [ ~E1 . . . ~EN ]
for the matrix whose columns are the column vectors ~Ej .

2. The parameter n plays no essential role and for simplicity can be set equal
to 1.

The first few lines of the proof contain:
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“Proof. The singular values of S ′ are σk =
√
λk, where λk are M

eigenvalues of H = STS . . . .”

The authors must mean H = (S ′)TS ′ in place of H = STS. The former is what
makes mathematical sense, and is how the proof is worded in [5]. Continuing:

“. . . . Since PTSn = 0, this matrix [H] has the simple form H =
PTP + ε2nSTn Sn, . . .”

An example of such P and Sn is:

P :=
[

1/2 1/2
1/2 1/2

]
, Sn :=

[
2 −2
2 −2

]
.

Then

PTSn =
[

2 −2
2 −2

]
= Sn 6= 0.

The attempted proof of the Lemma does not actually require that PTSn = 0,
but only its consequence that PTSn + STn P = 0. However, that is false, too.
Since the rest of the proof of the Lemma rests heavily on the latter claimed
equality, (equivalent to H = PTP + ε2nSTn Sn), it must be considered invalid.
There appear to be several more subtle errors in the proofs of the lemmas and
theorem, but there seems little point to discuss them until the simple error
discussed above is corrected or bypassed. See [6] for further discussion.

The above assumed for simplicity that the POVM was of the “linear” form
(2) because if the Theorem’s proof is incorrect for this special case, then it is
also incorrect under its more general hypotheses. Of course, that the Theorem’s
proof is incorrect does not imply that its conclusion is false.

In seeking a valid theorem of this type, it is natural to first consider the
linear case. Under this hypothesis, [6] conjectures that the theorem is true.

Lemma 1 assumes that M ≤ N . The attempted proof of the Theorem
states that its hypothesis 4 implies that M ≤ N , but this does not strictly
follow from the logically ambiguous statement of 4, though it may be what the
authors intended. The issue is whether hypothesis 4 is supposed to imply that
contextual values exist for all system observables FX , or only for a particular
system observable which is fixed throughout the proof.

The most important case under the “linear” assumption is probably the case
M = N under the additional assumption that contextual values exist for all
system observables FX , and [6] proves Lemma 1 and the Theorem’s conclusion
for this case.
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