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0 Disclaimer

This is an essay, not a research paper. Probably most of it is known to someone,
though I’ve not seen much of it presented in the literature in accessible ways.
There is a description of some original research without details, but the research
was a failure in the sense that the results obtained were no better than known
results.

1 Introduction

Several years ago there was a flurry of interest in

“Reversal of the Weak Measurement of a Quantum State . . .” by N.
Katz, et al., Phys. Rev. Lett. 101 200401 (2008).

It was selected as the subject of a “Viewpoint” article in the APS expository
journal Physics [2]. The article is available online without a subsciption at
physics.aps.org/articles/v1/34 . I will give some quotes from the article below,
but the reader is urged to first read the original.

The Katz, et al., article describes an experiment in which a measurement
on a quantum state was “undone”, yielding a state identical to the one before
the measurement. According to quantum theory as typically presented in older
texts which consider only “projective” measurements, this should be impossible.

Both the original Katz, et al., article and the Viewpoint speak of the sup-
posedly impossible restoration as having something to do with so-called “weak
measurements” and erasure of information. Here are some quotes from the
Viewpoint:

“In quantum mechanics courses, students learn that the possible
results of a quantum measurement of a physical quantity are the
eigenvalues of the operator corresponding to the physical quantity.
In other words, a measurement of the physical system “projects” it
onto one of the eigenstates of this operator. In general, this only
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can happen in one direction: mathematically, the projection cannot
be inverted, so it is an irreversible process. However, there are more
gentle measurement schemes that only acquire partial information
and so escape the constraint of traveling down this one-way street.
A recent experiment on superconducting phase qubits performed by
Nadav Katz and colleagues at University of California, Santa Bar-
bara, and the University of California, Riverside [1], demonstrates
that the effect of such a measurement can be “undone” and the
initial state can be recovered.”

. . .

“It has long been understood that not every quantum measurement
can be described by von Neumann’s paradigm, which has come to
be called the “collapse of the wave function” . . . Recently, however,
there has been much interest in a different kind of quantum measure-
ment called “weak” measurement. The idea of weak (continuous)
measurements was developed in quantum optics . . .. Although these
measurements yield only limited information about the system, they
allow a continuous observation that will perturb the system only
weakly. The transition from the initial state of the system to the
final state after the measurement due to the acquisition of informa-
tion during the measurement does not correspond to a projection.
As a result, the measurement can be inverted, and the initial state
of the system can be recovered.”

. . .

“This surprising state recovery is (yet) another example that re-
search on quantum computing and on experimental realizations of
quantum bits leads to a better understanding of the foundations and
the interpretation of quantum mechanics.”

When I initially read this in 2008, it raised many questions which continued
unanswered until now. I think I have found some of the answers, and hope to
share them with the readers of this essay.

The following points will be made:

• The result of the experiment of Katz, et al., is an immediate consequence
of the theory of “measurement operators”. It is not surprising, if one
believes the theory. It confirms part of the theory.

This observation is not meant to deprecate the experiment, but merely to
put it into context. I suspect that the context is a conceptual structure of
“measurement operators” which has scarcely been experimentally tested,
but I am not sufficiently familiar with the experimental literature to pose
this as other than a suspicion. I would not be surprised to learn that the
Katz, et al., experiment is the one of first (or even the very first) to test
parts of the “measurement operator” theory.
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• Both Katz, et al., and the Viewpoint article give me the impression that
the restoration of the premeasurement quantum state from the postmea-
surement is somehow conditional on the measurement being “weak”. That
seems to me to be misleading.

The most common definition of a “weak” measurement is one which neg-
ligibly changes all states. This is generally made precise by introducing
a “weak measurement” parameter which quantifies the “weakness” of the
measurement. Under this definition, I question some of the statements
of [1] and [2] seeming to relate “weakness” of the measurement to the
possibility or probability of recovery of the premeasurement state.1

• In general, “weakness” is a sufficient condition for “undoing” or “revers-
ing” a measurement with some nonzero probability, but is not a necessary
condition. Measurements which greatly change the premeasurement state
can sometimes be undone with probability 1.

• For the special case of positive measurement operators, “weakness” is cor-
related with the probability of reversal—the weaker the measurement, the
greater the probability of reversal.

The measurement operators of Katz, et al. [1] are sometimes positive, but
not always. I have never seen the distinction between positive and general
measurement operators made in a context in which “weakness” is claimed
to be associated with reversibility.

• It is often suggested [1, 2, 4, 9] that successful reversal is somehow cor-
related with erasure of “information”. This suggestion will be discussed
in the context of a precise “trade-off” between reversibility and “infor-
mation gain” for qubits (but not for higher dimensional systems) derived
in [4]. The conclusion will be that the trade-off for qubits seems more a
mathematical accident than a general principle to guide intuition.

In retrospect, the analysis leading to these general conclusions seems almost
trivial both mathematically and physically. However, my limited reading in the
field makes me wonder if the matter has often been viewed in a way that would
expose the triviality.

2 Preliminaries

The following will assume that the reader is familiar with the mathematical
structure of quantum mechanics as might be taught in any first course. Beyond

1During the preparation of this work, I have come across two papers, [4] and [9], which seem
to use “weak measurement” in the entirely different sense of “non-projective measurement”.
So far as I know, this usage is not common. However, if this were adopted as the definition
of “weak measurement”, then some of the statements of Katz, et al. [1] and the Viewpoint
article [2] could possibly be justified, though in a rather trivial way. It would be too confusing
to analyze every statement twice in the context of two very different definitions, so I will take
as the definition of “weak measurement” the one given in the main text — a measurement
which negligibly changes all premeasurement states.
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that, he2 should be familiar with the concept of “measurement operators” as
expounded, for example, in Nielsen and Chuang’s text [3].

Most of the mathematics of the quantum mechanics of systems with a finite-
dimensional state space is linear algebra. I am a mathematician with a specialty
in operator theory, which is the generalization of linear algebra to Hilbert spaces
of infinite dimension. I mention this to assure the reader that I am well qualified
to handle the mathematics. I have chosen not to belabor the elementary math-
ematics, in favor of concentrating on the larger picture. If a reader is unsure of
a mathematical step, he can be relatively sure that it will follow from routine
application of basic concepts of linear algebra.

That is not meant to suggest that I am immune from mistakes. If a reader
does spot an error, I would be grateful for notification.

When I learned quantum mechanics in the 1960’s, the term “[quantum]
measurement” was used differently than is common today. At that time the
emphasis was on measuring observables like position and momentum that could
take on a continuum of real values. Today the emphasis seems to be on ob-
servables like the spin of a quantum particle whose measurement yields only
results from a discrete index set, which I will always take to be a finite set for
expositional simplicity. Since the index set is finite, it may be taken to be the
set {1, . . . , n} of consecutive positive integers, but the integers themselves have
no physical significance (unlike, say, values of the momentum of a particle).

Below we shall consider the traditional formulation of quantum mechanics
in which states of a system are represented by positive operators of trace 1 on
a complex Hilbert space. We assume throughout that the Hilbert space is finite
dimensional. Such states are sometimes called “mixed states” in traditional
formulations. We use the common though slightly illogical convention that a
“positive” operator is a Hermitian operator with non-negative eigenvalues. The
operator is called “strictly positive” if all the eigenvalues are strictly positive.

2.1 Measurement operators

Today, measurement of a quantum system in a given state ρ is described by a
collection {Mi}ni=1, of “measurement operators Mi satisfying .∑

i

M†iMi = I , (1)

where I denotes the identity operator. The measurement yields two pieces of
data:

1. a member k of the index set {1, . . . , n} which occurs with probability
Tr[MkρM

†
k ] = Tr[M†kMkρ], and

2Here and elsewhere, “he” is synonymous with “he or she”. I follow the long-standing and
sensible grammatical convention that when the antecedent of a pronoun is of unknown gender,
either the male or the female pronoun carries the same meaning: “he”, “she”, “he or she”,
and “she or he” are synonymous.
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2. a new quantum state

σ :=
MkρM

†
k

Tr[MkρM
†
k ]

, (2)

called the postmeasurement state.

This assumes that Tr[MkρM
†
k ] 6= 0; otherwise the result k has probability zero.

When all measurement operators are invertible, which is the only case we shall
need to consider, all measurement results occur with positive probability, so for
simplicity the exposition will ignore zero-probability cases.

The measurement replaces the premeasurement state ρ with the postmea-
surement state σ. Since (mixed) states are represented by positive (necessarily
Hermitian) operators of trace 1, the denominator of the fraction of the definition
(2) of σ simply normalizes the trace of MkρM

†
k to trace 1.

2.2 Does reversing a measurement entail “erasure” of “in-
formation”?

After a measurement, the premeasurement state no longer exists, but knowl-
edge of the measurement result k gives us information about its relation to the
postmeasurement state. There is no obvious way to erase this information. For
example, we can write it down in indelible ink in a macroscopic lab notebook.
It may be useful to keep this in mind when evaluating statements like some of
those quoted above from the “Viewpoint” article or the following from [1]:

“‘In order for the [state-restoring] uncollapsing procedure to work,
we have to erase the information that was already extracted clas-
sically. This distinguishes this measurement-induced uncollapsing
from a ‘quantum eraser’ [ref. [10] of [3]], in which only potentially
extractable information is erased.”

2.3 Unnormalized states

It will sometimes be convenient to speak of “unnormalized states”, by which we
shall mean positive operators of positive trace not necessarily 1. An unnormal-
ized state may always be “normalized” by dividing it by its trace to produce a
state of trace 1.

2.4 The effect of measurements on pure states

A (mixed) state is called “pure” if it cannot be written nontrivially as a convex
linear combination of other states. Recall that when we are using the usual
picture of (mixed) states as positive operators of trace 1, pure states are are
represented by projectors with one-dimensional range. For a nonzero vector s
in the underlying (complex) Hilbert space, denote by Ps the projector on the
one-dimensional subspace spanned by s. (For future reference, note that we
need not and do not assume that s is normalized, since Ps as just defined is
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independent of the normalization.) Then after obtaining result k as described
in subsection 2.1, the postmeasurement state σ is

σ =
MkPsM

†
k

Tr[MkPsM
†
k ]

.

Since Ps has rank 1, so does MkPsM
†
k (except in the zero-probability cases

which we are ignoring), and hence so does σ. By the spectral theorem, the only
positive operators of rank 1 which have unit trace are projectors. Hence σ = Pq
for some nonzero vector q. Since the range of σ = Pq is the range of MkPs, we
must have q proportional to Mks, and σ = Pq = PMks.

In a common picture in which only pure states are considered and are repre-
sented by nonzero vectors up to normalization, the state change from premea-
surement to postmeasurement is

premeasurement s 7→ postmeasurement Mks.

If we insist on normalizing pure states, then for a normalized s (i.e., |s| :=√
〈s, s〉 = 1), the above becomes

premeasurement s 7→ postmeasurement
Mks

|Mks|
.

When the measurement operators are pairwise orthogonal projectors, the
measurement is called a projective measurement. That was the only kind I ever
heard of back in the 1960’s.

My impression is that the concept of “measurement operators” arose from
the 1983 monograph [5] of Krauss; in the literature “measurement operators”
are often called “Krauss operators”. The text [3] states that the concept arose
earlier:

“The theory of generalized measurements which we have employed
was developed between the 1940s and 1970s. Much of the history
can be distilled from the book of Krauss.” [5]

However, it does not give more detailed references, and I could not find any defi-
nite references to the origin of the “measurement operator” concept by browsing
through the Krauss book.

When I learned of measurement operators around 2005, I imagined that the
concept would be derivable from the structure of the 1960’s quantum mechanics
with which I was familiar. There is a questionable sense in which it can be,
but only very recently have I come to realize that it is probably better to think
of the concept of “measurement operators” as a genuine extension of quantum
theory as commonly presented in texts, not only of the 1960’s but also of much
later vintage.

One reason can be seen immediately from the above discussion. Suppose a
measurement {Pi} is projective, i.e., the Pi are pairwise orthogonal projectors.
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Suppose the result of a measurement is k, so for premeasurement state ρ , the
postmeasurement state σ is

σ =
PkρPk

Tr[PkρPk]
.

Since P 2
k = Pk and also PiPk = 0 for i 6= k, if the measurement is performed

again but with σ in place of ρ as premeasurement state, the postmeasurement
state is again σ. In other words, performing a projective measurement twice
yields the same result as performing it once; the second measurement does not
change the state.

However, for arbitrary measurement operators {Mi}, the result of the second
measurement need not be the same. This is easy to see when the initial state is
pure and described by a vector s, so that the unnormalized state after the first
measurement is Mks, and after the second is MjMks. For general measurement
operators required to satisfy only the condition

∑
iM
†
iMi = I, there is no reason

that MjMks should be proportional to Mks. This seems an essential difference
between projective measurements and general measurements.

3 “Undoing” a measurement

Now let us turn to the question of “undoing” a measurement with measurement
operators {Mi} . “State restoration” and “state reversal” will be used synony-
mously for any procedure which converts a postmeasurement state back into
the premeasurement state.

Suppose the premeasurement state is ρ, and the result of the measurement
is k. We seek a second measurement with measurement operators {M ′i} such
that for some result j with nonzero probability, the postmeasurement state for
the second measurement will be ρ:

M ′jMkρM
†
kM

′
j
†

Tr[M ′jMkρM
†
kM

′
j
†]

= ρ . (3)

This restoration will occur with probability

Tr[M ′jMkρM
†
kM

′
j
†]

Tr[MkρM
†
k ]

.

We may choose notation so that k = 1 = j. If we want (3) to hold for all
initial states ρ, then a sufficient3 condition is that

M ′1 = cM−1
1 (4)

3It seems likely that the condition is also necessary, but I have not examined this question
because it will be peripheral to the discussion to follow. For (3) to hold for all pure states,
it is necessary that (taking k = 1 = j for simplicity) M ′1M1s = c(s)s for all vectors s, where
c(s) is a nonzero constant depending on s. If c(s) can be shown to be independent of s, then
(4) follows.
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with c a nonzero scalar; that is, M ′1 is proportional to M−1
1 . The constant c

cannot be too large because of the constraint∑
i

M ′i
†
M ′i = I ,

but otherwise can be arbitrary.
So, we can always restore any initial states ρ with nonzero probability so

long as at least one of the original measurement operators {Mi} is invertible.
For a nontrivial projective measurement, none of the measurement operators
are invertible.

Both the Katz, et al., and Viewpoint papers spoke of “weakness” of the
measurement as somehow relevant. One definition of a “weak” measurement
requires that all of the Mi/||Mi|| be close to the identity, so in particular, all are
invertible. This is a sufficient condition for restoration with nonzero probability,
but it is very far from a necessary condition.

This can be seen by considering the special case in which there is only one
measurement operator, M1, which must be unitary. A second measurement
with only one measurement operator M ′i := M−1

1 then reverses the original
measurement with probability 1. Since M1 can be an arbitrary unitary operator,
it need not be close to the identity, so the measurement need not be “weak”.
In fact, given an initial pure state ρ = Ps, the pure postmeasurement state
M1ρM

†
1 = PM1s can be any pure state. If M1s is orthogonal to s, the fidelity

Tr[PsPM1s] between pre and post measurement states is as small as a fidelity
can be, namely zero.

4 State restoration with an invertible measure-
ment operator

4.1 A simple but nonoptimal protocol for state restora-
tion.

Let us examine more closely the problem of restoration in case one of the mea-
surement operators, say M1, is invertible, assuming that the system Hilbert
space is finite dimensional.4 Let λmin denote the smallest (necessarily positive)
eigenvalue of (M†1M1)1/2. Then ||M−1

1 || = λ−1
min.

We shall choose M ′1 := cM−1
1 with c a positive constant chosen as large as

possible (to assure the greatest probability of success with this simple method),
which means that

c := λmin .

Next define:
M ′2 :=

√
I − λ2

minM
′
1
†M ′1 .

4The assumption of finite dimensionality is only for expositional simplicity. What we shall
say works equally well for infinite dimensional spaces with appropriate changes of language,
e.g., replace “least eigenvalue of M” with “smallest point in the spectrum of M”.
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We shall show that any state ρ can be restored with probability prestore at least

prestore ≥ λ2
min . (5)

For the particular method to be described, the restoration probability is exactly
equal to λ2

min, but it is not clear that other methods cannot do better.
Our protocol for restoration is the following.

1. Perform the measurement defined by {Mi}.

2. If the result is i 6= 1, declare failure.

3. If the result is i = 1, perform a second measurement defined by measure-
ment operators {M ′j}2j=1 If the result is j = 2, declare failure.

The state will be restored if neither measurements results in failure. In that
case, the final state will be the normalization to trace 1 of the unnormalized
state

M ′1M1ρM
†
1M

′
1
† ∝M−1

1 M1ρM
†
1M

−1
1

† ∝ ρ . (6)

The λmin factors have been omitted for clarity because any scalar multiple will
be canceled after normalization. Since M ′1 is proportional to M−1

1 , the left side
of (6) is proportional to ρ and becomes ρ after normalization.

The probability that the first measurement succeeds is

p(1st measurement succeeds) = Tr[M1ρM
†
1 ] .

The conditional probability that the second measurement succeeds given that
the first did is

p(2nd succeeds | 1st succeeds) = Tr

[
M ′1

M1ρM
†
1

Tr[M1ρM
†
1 ]
M ′1
†
]

.

Hence the probability of success for measurement 1 followed by success for
measurement 2 is

p(both measurements succeed) = p(2nd succeeds | 1st succeeds) p(1st succeeds)

= Tr

[
M ′1

M1ρM
†
1

Tr[M1/ρM
†
1 ]
M ′1
†
]

Tr[M1ρM
†
1 ]

= λ2
minTr[M−1

1 M1ρM
†M−1

1

†
]

= λ2
min . (7)

It may seem surprising that the probability of restoration does not depend on
the initial state ρ. Similar observations regarding both this independence and
the formula (7) for the overall probability of reversal were made in an interesting
paper of Cheong and Lee [4].

It should be emphasized that the probability calculated in (7) is the “overall”
probability that the state reversal succeeds, not the conditional probability that
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state reversal succeeds given that the experimenter is presented with the state
M1ρM

†
1/Tr[M1ρM

†
1 ] resulting from the initial measurement.

Note that nowhere was the “weakness” of the measurement used. One defini-
tion of “weak” measurement requires that all Mi/||Mi|| be close to the identity.
Define λmax,i to be the largest eigenvalue of (M†iMi)1/2. For positive measure-
ment operators, this definition is the same as requiring that

λmax,i − λmin,i

λmax,i
= 1− λmin,i

λmax,i
≈ 0 (8)

be small for all i. In the context of the experiment of Katz, et al. [1] in which
measurement results other than 1 are ignored, only (8) for i = 1 might reason-
ably be required.

4.2 The simple protocol in the context of the experiment
of Katz, et al. [1]

The simple state restoration protocol just described is essentially that employed
in the experiment of Katz, et al. [1], though it is described differently there and
there are some differences of detail. The measurement operators that they use,

M1 :=
[

1 0
0 e−iφM

√
1− p

]
, M†2M2 = I −M†1M1,

are not necessarily positive due to the factor e−iφM in the (2, 2) entry. Here φM
is described as “an accumulated phase due to an adiabatic change in the energy
level spacing during the measurement”, which I don’t know how to interpret.
Also, p represents a certain probability in their experiment which we have not
discussed.

The only importance of φM for our considerations is that if e−iφM is not
close to 1 (and it isn’t in some cases, according to their formula (3)), then the
measurement is not weak for small p, contrary to impressions given by [1] and
[2]. A unit premeasurement vector state ψbefore =

(
a
b

)
is transformed by a

“successful” measurement (i.e. result 1) into

ψafter =
1
N

(
a

e−iφM b
√

1− p

)
,with the normalization factor N :=

√
|a|2 + (1− p)|b|2.

The fidelity (overlap) between the premeasurement and postmeasurement states
is

|〈ψbefore|ψafter〉|2 =
(|a|2 + |b|2)2 − [ p|b|2 + 2|a|2|b|2(1− cosφM

√
1− p) ]

|a|2 + (1− p)|b|2
,

which must be close to 1 = |a|2 + |b|2 for a “weak” measurement which does not
appreciably change the initial state ψbefore. Thus for small p, the measurement
cannot be “weak” in this sense unless cosφM ≈ 1.
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Since the above criterion (8) for “weak” measurement applies only to positive
measurement operators, let us specialize to the case cosφM = 0. Then a “weak”
measurement corresponds to p = 1−λ2

min ≈ 0, which is the same as (8) modified
to apply to only the measurement operator M1.

4.3 A better protocol for inverting a measurement

4.3.1 The protocol of Cheong and Lee

The method for inverting a measurement just given in the previous subsection
is simple, but almost obviously not best possible. The protocol starts with a set
of measurement operators M1, . . . ,Mn, but can yield the desired inversion only
if the first measurement happens to result in 1. If that measurement yielded
result 2 through n, the simple protocol declares “failure”, thus throwing away
information obtained from the measurement. Instead of declaring “failure”, one
could obtain additional opportunities for inversion by proceeding in the same
way as with initial outcome 1.

Define λmin,i to be the smallest eigenvalue of (M†iMi)1/2. For the inversion
method just described, Cheong and Lee [4] note using reasoning similar to the
above that the overall probability of restoration is

probability of restoration using Cheong/Lee method =
n∑
i=1

λ2
min,i. (9)

4.3.2 The Cheong/Lee protocol is best possible for “one-shot” in-
version

For “one-shot” inversions (defined as requiring just one measurement to invert),
the Cheong/Lee method is best possible. This is because

p(restoration) =
n∑
i=1

p(result i followed by restoration)

=
n∑
i=1

λ2
min,i .

Here the probabilities in the sum of the first line are the “overall” probabilities
of restoration when the result is i (i.e., the probability that the result is i and
the state is restored), not the conditional probability of restoration given result
i. The proof that the overall probability is λ2

min,i is identical to the proof of
subsection 4.1. The thing to note is that the overall probability derived there
is an exact probability which is independent of the initial state, not simply a
worst-case probability which might be better for some states. The argument
just given would be invalid if λ2

min,i were merely a worst-case probability.
As before, let λmin,i denote the smallest eigenvalue of (M†iMi)1/2, and λmax,i

the largest eigenvalue. For the case of just two measurement operatorsM1,M2 =
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√
I −M2

1 operating on a space of dimension 2, we have λ2
min,2 = 1 − λ2

max,1

(because M†1M1 +M†2M2 = I), and (9) reduces to

overall probability of restoration = 1− λ2
max,1 + λ2

min,1 . (10)

4.3.3 Relation between “weakness” of the measurement and proba-
bility of restoration for positive measurement operators

Recall that for positive measurement operators, (8) related the relative sizes of
λmin,i and λmax,i to the “weakness” of the measurement. Equation (10) relates
the relative sizes of λmin,i and λmax,i to the probability of restoration, though not
in precisely the same way as (8). Thus (8) and (10) together might be taken as a
qualitative correlation between “weakness” for positive measurement operators
and probability of restoration. A more precise relation will be developed below.

For positive measurement operators (only), one way to quantify the “weak-
ness” of a measurement is to define a “weak measurement” parameter g by

g :=
n∑
i=1

(
1− λmin,i

λmax,i

)
, (11)

so that values of g near 0 correspond to “weaker” measurements. Of course,
other reasonable definitions of “weakness” of a measurement are possible. For
example, a weak measurement parameter g′ definied by

g′ :=
n∑
i=1

λ2
max,i

(
1− λmin,i

λmax,i

)
would allow a “weak” measurement to greatly alter some initial states if this
occurred with sufficiently small probability.

If we do decide to quantify the “weakness” of a measurement by the pa-
rameter g of (11), then we can show that for positive measurement operators, a
measurement is “weak” by this criterion if and only if the probability of restora-
tion (9) is close to 1.

Before presenting the details, we remark that one should not read too much
into this. First of all, the hypothesis that the measurement operators be positive
is crucial, as the previous example of a single unitary measurement operator
shows. The physical meaning of this assumption is not clear to me. Second,
it is not true that the possibility of state restoration with nonzero probability
is correlated in any way with “weakness” of the measurement. However, the
possibility of state restoration with probability near 1 does require a “weak”
measurement (i.e., g ≈ 0). Conversely, if the measurement is weak enough,
(and continuing to assume that all measurement operators are positive) then
the state can be restored with probability close to 1.

The details are as follows. From the algebraic identity (1−x)2 = (1−x)(1+
x), one obtains the inequalities

1
2

n∑
i=1

(
1−

λ2
min,i

λ2
max,i

)
≤ g ≤

n∑
i=1

(
1−

λ2
min,i

λ2
max,i

)
,
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from which it follows that g ≈ 0 is equivalent to λmin,i/λmax,i ≈ 1 for all i.
Since I =

∑
iM
†
iMi =

∑
iM

2
i , for a Hilbert space of dimension d we also have

d
n∑
i=0

λ2
min,i ≤ Tr[I] = d ≤ d

∑
i

λ2
max,i, i.e., (12)

n∑
i=0

λ2
min,i ≤ 1 ≤

∑
i

λ2
max,i . (13)

From the equivalence of g ≈ 0 with λmin,i/λmax,i ≈ 1 just noted, it follows that
g ≈ 0 is equivalent to

∑
i

λ2
min,i =

∑
i

λ2
min,i

λ2
max,i

λ2
max,i ≈

∑
i

λ2
max,i .

Combining this with (13) shows that g ≈ 0 is equivalent to∑
i

λ2
min,i ≈ 1 . (14)

This shows that for the Cheong/Lee method applied to positive measurement
operators, g ≈ 0 is equivalent to the probability of reversal being close to 1.
This is the strongest rigorous embodiment that I know of a relation between
weak measurement and state reversal.

4.4 Cheong and Lee’s relation between “reversibility” and
“information gain”

The interesting paper “Balance between information gain and reversibility in
weak measurement” of Cheong and Lee [4] defines “reversibility” R of a mea-
surement as in (9),

R :=
n∑
i=1

λ2
min,i , (15)

and “information gain” as a rescaling of the quantity

G :=
n∑
i=1

λ2
max,i . (16)

I am using G as a proxy for their “information gain” (which will be defined
below) for simplicity of exposition. Also, I should make clear that these are not
actually their definitions, but are calculated quantities which follow from their
more primitive definitions. However, for a concise presentation it is convenient
to start with (15) and (16) as definitions. The previous subsection explained
why R is a natural definition of “reversibility” — it is the probability of reversal
using the Cheong/Lee method, which is currently the best method known.
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Their motivation for using G as the “information gain” is more complicated
and will not be presented here. The idea, considerably oversimplified, is that if
measurement result i occurs, then one’s “best guess” at the initial state is the
state which gives the maximal probability of obtaining result i. (This is similar
to the motivation for the “maximum likelihood” method of statistical estima-
tion.) Assuming for simplicity that the measurement operators are positive, the
“best guess” will be the eigenstate ψmax corresponding to the largest eigenvalue
λmax,i of the ith measurement operator.5

The confidence that we have in this guess will increase as λmax,i increases.
If λmax,i is as small as it can be (i.e., equal to the smallest eigenvalue) then the
measurement operator is a multiple of the identity, and when the result is i, the
initial state is unchanged by the measurement. In that case, the measurement
has given no usable information concerning the unknown initial state.

Thus we would expect a reasonable measure of the “information gain of the
measurement to be a monotonic function of each of the λmax,i. Up to rescaling,
any such function could serve, including G.

Of course, some such functions might have additional desirable properties.
For example, by subtracting a suitable constant from G, we could obtain a mea-
sure of “information gain” which is zero for measurements which never change
the state.

From the defining relation for positive measurement operators,∑
i

M†iMi =
∑
i

M2
i = I ,

it follows that for a system with Hilbert space of dimension d,

d = Tr[I] =
∑
i

all squared eigenvalues of Mi ≥
∑
i

(λ2
min,i + λ2

max,i) = R+G.

(17)
Cheong and Lee [4] present a rescaled version of (17) as a “trade-off relation
between reversibility and information gain”, motivated by a more complicated
argument. They call their “information gain” Gmax and define it by

Gmax :=
1

d(d+ 1)
(d+G) (18)

with d the dimension of the Hilbert space and G defined by as above in (16).
Their rescaled version of our (17) (equation (17) of [4]) is

d(d+ 1)Gmax + (d− 1)R ≤ 2d . (19)

However, the inequality in (19) or (17) seems a bit unsatisfying. For example,
from (19) we cannot conclude that an increase in reversibility entails a necessary

5There is an ambiguity, not discussed by Cheong and Lee [4], in case the largest eigenvalue is
degenerate, In that case, interpreting their mathematical expressions literally, the “best guess”
may be taken to be any vector in the eigenspace corresponding to the largest eigenvalue.
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reduction in information gain. Also the derivation of (17) shows clearly that
the inequality will usually be strict for d ≥ 3.

For the special case of d = 2 corresponding to qubits, the inequality in (19)
becomes an equality, which shows a genuine tradeoff:

6Gmax +R = 4 . (20)

In view of the way that this arises from (17), it appears more a mathemati-
cal accident which applies only to qubits than as a general principle to guide
intuition.

4.5 A failed attempt at a better restoration method

We should remember that (9) applies only to one possible way of obtaining re-
versal, and it is not clear to me that more efficient methods are impossible. For
example, one could consider the following protocol. Start with a measurement
{M1,M2} which one wants to reverse. Assume for simplicity that the Mi are
positive. Starting with state ρ, try to reverse result 1 as described in the discus-
sion leading to (5). If that fails, in the notation leading to (5), the system will
be in unnormalized state [I − (λminM

−1
1 )2]1/2 ρ [I − (λminM

−1
1 )2]1/2. Instead of

giving up as before, try again to obtain the original state ρ. Though this will be
impossible because I−(λminM

−1
1 )2 has a nontrivial nullspace, one could replace

λminM
−1
1 by a smaller operator cλminM

−1
1 with c < 1 to obtain an additional

opportunity for reversal. The procedure can be iterated to obtain an infinite
sequence of reversal opportunities. Is it obvious to the reader that this cannot
produce a better result than the simple method described after (5)?

Unfortunately, it does not seem to produce a better result than simply stop-
ping after one try. According to my preliminary calculations, one does obtain
an infinite sequence of reversal opportunities, but regardless of the choice of
c, summing their probabilities produces exactly the same result as the original
one-shot method. (In case this seems contradictory, note that the first try in
the new method will also depend on c, so that the first term in the sum will
be less than the probability of the original one-try method.) But I would be
hesitant to bet that no clever person could produce a better method.

I have not been able to think of a way to see, a priori, that the final result of
the expanded method will be independent of c and exactly equal to the result
of the one-shot method which obtains an overall probability of reversal of λ2

min,i

when the measurement to be reversed yields result i. I cannot help wondering
if some general, as yet undiscovered principle might be responsible.

I should also warn that the calculations leading to this conclusion have not
been carefully written out and checked, so I cannot publicly guarantee their
accuracy, and the reader should work them out for himself before relying on
them. But privately I am sufficiently convinced that I have stopped working on
this method.
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5 Remark on “partial collapse” terminology

The older quantum mechanics, which considered only projective measurements,
referred to the measurement process as “collapsing” the premeasurement state.
Both Katz, et al., and the Viewpoint article refer to the postmeasurement state
after a measurement with measurement operators as a “partial collapse”. I
do not think that this terminology is particularly helpful, even for projective
measurements.

In the old way of thinking, the quantum state was an objective physical
property of a system (“ontological” in current terminology), and a projective
measurement was considered as replacing it by a different physical state. This
replacement was called a “collapse”, perhaps because there was no obvious way
to undo it, as contrasted with unitary evolution described by the Schroedinger
equation.

A recent thought-provoking article, “On quantum Theory” by B-G. Englert
[7], takes a different view with which I basically agree:

“ ‘Collapse of the state’ or ‘wave function collapse’ are popular syn-
onyms for state reduction. The connotation that the transition[

ρ 7→
MkρM

†
k

Tr[MkρM
†
k ]

]

is a dramatic dynamical process, as if the physical system were evolv-
ing, is clearly misleading. . . . The statistical operator [ρ] is not a
physical object, it describes [emphasis his] the object by encoding
what we know about it, and state reduction is the bookkeeping
device for updating the description. [emphasis mine] . . . differ-
ent physicists may very well use different, equally correct, statistical
operators for predictions about [the same system]. ”

In this quote, one can clearly see the influence of Bayesian ideas, even if one does
not go so far as to consider the quantum state as a probability distribution over
some inaccessible set of “ontological” (i.e., “physically real”] states. Though
recent widely discussed arguments of Pusey, Barrett, and Rudolph [6, for an
accessible introduction see [10]] suggest that quantum states are something more
than a state of knowledge (“epistemic”, in current jargon), that does not imply
that a quantum state has nothing to do with a state of knowledge. Indeed,
the very concept of the “statistical operator” of Englert’s quote (a.k.a. “mixed
state”) involves a state of knowledge.

Englert views what some call “state collapse” as merely an updating of the
“knowledge” portion of the state, and this seems to me a sensible view. If one
takes it, the so-called “measurement problem” seems to vanish.
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6 Afterword

On returning to familiar surroundings from a trip, I usually have the sense that
I am not quite the same person I was before the trip. The same holds for intel-
lectual trips. I have learned from writing this essay, and would probably write
it slightly differently were I to start again. But my time is limited, and the au-
dience uncertain, possibly nonexistent. Even were I to rewrite it, on completion
I probably would feel the need for yet another rewriting. This afterword is a
substitute for rewriting.

In the Introduction, I wrote:

“The result of the experiment of Katz, et al., is an immediate conse-
quence of the theory of ‘measurement operators’. It is not surprising,
if one believes the theory. It confirms part of the theory.

This observation is not meant to deprecate the experiment, but
merely to put it into context. I suspect that the context is a concep-
tual structure of “measurement operators” which has scarcely been
experimentally tested, but I am not sufficiently familiar with the ex-
perimental literature to pose this as other than a suspicion. I would
not be surprised to learn that the Katz, et al., experiment is the
one of first (or even the very first) to test parts of the ‘measurement
operator’ theory.”

Since then, I have come across two relevant references, S. E. Ahnert and C.
Page, “General implementation of all positive-operator-value measurements of
single photon polarization states” [8], and [9].

The Ahnart/Page article describes how to physically implement any mea-
surement operators on qubits. I have not read this in detail and cannot vouch
for it, but I have no reason to doubt it.6 Since it appears to use only non-
controversial quantum mechanics which has been around for over half a century,
it seems good evidence that the “measurement operator” concepts are probably
sound. Still, it seems strange that few experimental tests have been done, and
that the only ones of which I know are quite recent.

The paper [9] of Chen, et al., entitled “Experimental test of the tradeoff
relation in weak measurement” describes an experiment intended to verify the
“trade-off” relation (20) of the Cheong/Lee paper [4] discussed earlier.7 Recall
that the Cheong/Lee paper presents what it describes as a “trade-off” between
“reversibility” and information gain. As discussed earlier, there is a true trade-
off only for the special case of qubits. This is the setting of the [9] experiment,
which does confirm the Cheong/Lee conclusion.

6I include this caveat only because the Physical Review journals, including the supposedly
prestigious Phys. Rev. Lett., publish so many questionable papers. Refereeing standards
seem to be minimal to effectively nonexistent. I try to avoid citing papers for which I cannot
personally vouch.

7In [4] and [9], the term “weak measurement” is unequivocally used to describe a non-
projective measurement, as opposed to the more usual use of the term to describe a measure-
ment which negligibly alters the premeasurement state.

17



This experiment was mainly of interest to me because it explicitly imple-
ments a measurement operator M1 using a Sagnac interferometer. Nominally,
M1 is part of a measurement {M1,M2}, but in their setup either M1 or M2 can
be implemented, but not at the same time. After M1 “clicks”, they then invert
the output state using a second Sagnac interferometer, and check that it really
was inverted using quantum tomography.

The only experiments known to me which test (even indirectly as does [9])
the usual “measurement operator theory are the experiment of Katz, et al. [1]
and that of [9], both of which appeared within the past five years. It seems
odd that experimental verification should be so hard to find for a theory which
has been so extensively studied for at least thirty years (surely there must be
thousands of theoretical papers on it).

Acknowledgement: I am grateful to S-W. Lee for pointing out an error in a
draft of the first version (October 23) of this essay.
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