Department of Mathematics
Mathematics Colloquium - Fall 2002
Monday, September 30th, 2002
2:30pm - 3:30pm, in Science 2-065 Ethan BolkerUMass BostonHow Is a Graph Like a Manifold?
Abstract:
Some recent developments in the theory of group actions on complex manifolds have revealed unexpected connections between the geometry of these manifolds and the combinatorics of graphs immersed in n-space. In this talk I will discuss some of those connections, concentrating on the questions in combinatorics that come from the topology. In particular, I will explore conditions under which it makes sense to talk about the "Betti numbers" of an immersed graph. We can then use those Betti numbers to approach a proof of the McMullen conjectures for simple polytopes and to count the number of parallel redrawings of a framework.
|
![]() |