SELECTED INVITED LECTURES

 

1. Classification of Nilpotent Orbits in Symmetric Spaces Northeastern University Algebra/Geometry Seminar, November 1995.

 

2. Nilpotent Orbits and Theta-Stable Parabolic Subalgebras NAM's Granville-Brown Session The Joint Winter Mathematics Meetings Baltimore, Maryland, January 1998

 

3. Centralizers of Nilpotents and The Bala-Carter Classification Northeastern University GASC Seminar, June 1999

 

4. Component Groups of Centralizers of Nilpotents in Symmetric Spaces CAARMS5 University of Michigan at Ann Arbor, June 1999

 

5. ON THE ADMISSIBILITY OF NILPOTENT ORBITS OF SIMPLE EXCEPTIONAL REAL LIE GROUPS OF INNER TYPE. AMS Sectional Meeting held at University of South Carolina Columbia on March 16-18, 2001, Special Session on Algebraic Structures Associated with Lie Theory, III.

 

6, ADMISSIBLE NILPOTENT ORBITS OF EXCEPTIONAL REAL LIE GROUPS Joint Mathematics Meeting San Diego, CA January 6-9, 2002 Special Session on Algebras, Forms, and Algebraic Groups, III

 

7. Some Applications of the Kostant-Sekiguchi Correspondence. International Congress of Mathematicians, Beijing, China, August 20-28, 2002 Session on Lie Groups and Representation Theory.

 

8. Maximal Tori of Reductive Centralizers of Nilpotents in Exceptional Complex Symmetric Spaces, Ottawa Canada Canadian Mathematical Society Winter 2002 Meeting December 8 -10, 2002, Special Session in Representation Theory of Real and p-adic Groups.

 

9. Sur certains tores du centralisateur reductif d'un nilpotent element, Universite de Poitiers, France, 9 Janvier, 2003, Seminaire en Theorie des Groupes de Lie, Departement de Mathematiques.

 

10. An algorithm for computing maximal tori of centralizers of nilpotents in symmetric spaces associated with non compact simple exceptional real Lie algebras, AMS Joint Mathematics Meeting, Baltimore, MD January 15-18, 2003, Special Session on Algebras, Actions, and Algorithms.

 

11. Computing maximal tori using LiE and Mathematica, International Conference in Computational Science, St. Petersburg Russia June 2-4, 2003, Workshop on Computer Algebra Systems.

 

12. Quantization in Physics and Mathematics, Science Colloquium Hour The University of Massachusetts Boston April 9, 2004

 

13. Computing theta-stable parabolic subalgebras using LiE, International Conference in Computational Science, Krakow, Poland, June 6-9, 2004, Workshop on Computer Algebra Systems.

14. Richardson Orbits for Real Semisimple Lie Groups  Conference on Nilpotent Orbits and Representation Theory, 2004  Fuji-Zakura So, Japan September 5-10 2004.

 

15. Prehomogeneous  Spaces Associated with Nilpotent Orbits of Complex Lie Groups AMS Special Session on  Representations of Lie Algebras AMS Joint Mathematical Meeting  January 5- 8, 2005 Atlanta Georgia.

 

16. Some Remarks on the Theory of Nilpotent Orbits and Prehomogeneous Spaces , Stonehill College, Easton Massachusetts, January 31, 2005

 

17. A LiE subroutine for computing prehomogeneous spaces associated to real  nilpotent orbits International Conference on Computational Science and its Applications (ICCSA 2005) May 9 - 12, 2005 Suntec, Singapore, Singapore.

 

18. Une application élémentaire d’un théorème de Tauvel, GEGAL Université de Poitiers, France Jeudi 19 Janvier 2006.

 

19. Espaces préhomogènes associés aux orbites nilpotentes des groupes de Lie réductifs, Séminaire Théorie de Lie et Applications  Université de Poitiers, France Jeudi 26 Janvier 2006.

 

20. Prehomogeneous spaces associated to graded reductive Lie algebras and their relative invariants. International Congress of Mathematicians, August 22 - 30, 2006, Madrid Spain.

 

21. A general computational scheme for testing admissibility of nilpotent orbits of real Lie groups of inner type. Second International Congress on Mathematical Software ICMS'2006, September 1-3 2006, Castro Urdiales Spain.

 

22. Bala-Carter Classification and Vinberg Prehomogeneous Spaces. University of Maryland College Park MD November 29, 2006.

 

23. Classification of a large class of prehomogeneous spaces and description of their relative invariants.  Morgan State University Department of Mathematics Colloquium November 30 2006 Baltimore MD.

 

24. Structure and Representations of Real Reductive Lie Groups: A Computational Approach. Interactive Parallel Computation in Support of Research in Algebra, Geometry and Number Theory, Mathematical Sciences Research Institute in Berkeley, CA January 29 – February 2, 2007.

 

25. Software for Computing Standard Representations I,  Atlas of Lie Groups and Representations Winter Meeting, MIT  Cambridge MA March19 – March 23, 2007.

 

26. Software for Computing Standard Representations II, Atlas of Lie Groups and Representations Winter Meeting, MIT  Cambridge MA March19 – March 23, 2007.

 

27. The Atlas of Lie groups and representations: scope and successes, CAARMS13 Boston MA June 19-22 2007.

 

28. The Atlas of Lie groups and representations: Character Table, Cohomology and representation theory for finite groups of Lie type American Institute of Mathematics Palo Alto CA June 25-29, 2007 www.aimath.org/WWN/finiteliegps/

 

29. Bala-Carter type classification of nilpotent orbits of real Lie groups, Workshop on ATLAS OF LIE GROUPS V July 16, 2007 - July 20, 2007, American Institute of Mathematics, Palo Alto CA.

 

30. A new approach for computing generators for U(g)^K , American Mathematical Society Joint Meeting, San Diego, CA January 6 – 9, 2008.

 

31. Nilpotent orbits associated to Coxeter cells, American Mathematical Society Joint Meeting, Washington DC, January 5 – 8, 2009.

 

32. Algorithmic and Theoretical Considerations for Computing Generators of the Centralizer of K in U( g). Number Theory Seminar, Purdue University, West Lafayette, IN. Thursday March 12, 2009.

 

33. Invariant Theory of the Enveloping Algebra. AMS 2009 Spring Southeastern Section Meeting. Special Session on Algebraic Groups and Symmetric Spaces, Raleigh, NC, April 4-5, 2009.

 

34. The Orbit Method: An insight from Physics. Mathematics Department Colloquium Medgar Evers College Brooklyn New York, December 2, 2009.

 

35. Computational Aspects of the Unitary question. Physics Department Seminar Series University of Massachusetts Boston, March 31, 2010.

 

36. Algorithmic Approaches to the Unitary Dual. CUNY Graduate Center Representation Theory Seminar, New York, May 14, 2010.

 

37. The Exceptional Lie Group E8, the Unitary Question, and the Standard Model. CAARMS 16 (Conference for African-American Researchers in the Mathematical Sciences) Mt. Washington Conference Center Johns Hopkins University Baltimore, MD June 15-18, 2010.

 

38. Variations on a Recent Theorem of Kostant. Workshop “Topics in the Theory of Weyl Groups and Root Systems” in honor of Professor Jiro Sekiguchi on his 60th birthday Graduate School of Math. Sciences, University of Tokyo, Japan 2011/09/20 - 2011/09/22.

 

39. Molien Series and a Recent Theorem of Kostant. Worldwide Center of Mathematics, Cambridge Massachusetts February 24, 2012. (See Video)

 

40. Invariant Theory of the Enveloping Algebra. Colloquium Howard University, Washington DC, March 9, 2012.

 

41. Geometrical Aspects of the Intriligator-Morrison-Seiberg SuperpotentialCAARMS22 Institute of Advanced Studies Princeton NJ  June 17, 2016. (See Video)

 

42. Coup de Projecteur sur le mathématicien Robert Langlands Discours fait au Département de langues et de littératures de Arcadia University (Nova Scotia, Canada) KCIC Auditorium13 Février 2020 à 18 heures.

 

43. Tessellations of a Weyl Group  Mathematics Department Colloquium Arcadia University (Nova Scotia, Canada) February 14 2020.