PREHOMOGENEOUS SPACES ASSOCIATED WITH NILPOTENT ORBITS

 

 

 

This webpage links to tables containing results from the following papers:

 

Prehomogeneous spaces associated with real nilpotent orbits, Co-authors Steven Glenn Jackson and Alfred G. Nol (To appear in Journal of Algebra)

 

Prehomogeneous spaces associated with nilpotent orbits in simple real Lie algebras E6(6) and E6(-26)  and their relative invariants,  Co-authors Steven Glenn Jackson and Alfred G. Nol (To appear in Experimental Mathematics Journal)

 

A LiE subroutine for computing prehomogeneous spaces associated with nilpotent Complex Orbits Co-authors Steven Glenn Jackson and Alfred G. Nol Lecture Notes in Computer Science, Springer-Verlag  Vol 3516,  (611618),  2005.

 

A LiE subroutine for computing prehomogeneous spaces associated to real  nilpotent orbits Co-authors Steven Glenn Jackson and Alfred G. Nol  Lecture Notes in Computer Science, Springer-Verlag Vol 3482, (512521),  2005.

 

Prehomogeneous spaces associated to complex nilpotent orbits Co-authors Steven Glenn Jackson and Alfred G. Nol  Journal of Algebra Volume 289, Issue 2, (515-557) 2005.

 

 

Click on the group in order to download the pdf file containing the tables.

 

 

 

COMPLEX

 

 

 

 

 

G2

F4

E6

E7

E8

 

 

 

 

For the real cases we use the Kostant-Sekiguchi correspondence to find modules of type ki  and pi. We also explain how to interpret the table entries in the above papers.

 

 

 

REAL pi

 

 

 

 

 

 

G

 

FI

FII

EI

EII

EIII

EIV

EV

EVI

EVII

EVIII

EIX

 

 

 

 

REAL ki

 

 

 

 

 

 

G

 

FI

FII

EI

EII

EIII

EIV

EV

EVI

EVII

EVIII

EIX